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UNIT I 

METRIC SPACES 

Definition : A metric space is a non-empty set M together with a function 𝑑:𝑀 ×𝑀 → 𝑅 

satisfying the following conditions: 

(i) 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑀 

(ii) 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

(iii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  for all 𝑥, 𝑦 ∈ 𝑀 

(iv) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 (triangle inequality) 

𝑑 is called a metric or distance function and d(x,y) is called the distance between x and y. 

Note : The metric space M with the metric d is denoted by (M, d) or simply by M when the 

underlying metric d is clear from the context. 

Example 1 : In R we defind 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.  Then d is a metric on R.  This is called the 

usual metric on R. 

Proof : Clearly 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| ≥ 0. 

Also, 𝑑(𝑥, 𝑦) = 0 ⇔ |𝑥 − 𝑦| = 0 ⇔ 𝑥 = 𝑦. 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = |𝑦 − 𝑥| = 𝑑(𝑦, 𝑥). 

Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑅. 

Then, 𝑑(𝑥, 𝑧) = |𝑥 − 𝑧| = |𝑥 − 𝑦 + 𝑦 − 𝑧| ≤ |𝑥 − 𝑦| + |𝑦 − 𝑧| = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Hence, d is a metric on M. 

Note : Whenever we consider R as a metric space the underlying metric is taken to b the usual 

metric unless otherwise stated. 

Example 2 : In C, we define 𝑑(𝑧, 𝑤) = |𝑧 − 𝑤|.  Then d is a metric on C.  This is called the 

usual metric on C. 

Note : If the complex number 𝑧 = 𝑥 + 𝑖𝑦 is identified with the point (x,y) of the two 

dimensional Euclidean plane then the above distance formula takes the form             𝑑(𝑧, 𝑤) =

√(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2 where 𝑧 = 𝑥 + 𝑖𝑦 and 𝑤 = 𝑢 + 𝑖𝑣.  This is nothing but the usual 

distance between the points (𝑥, 𝑦) and (𝑢, 𝑣) in the plane. 
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Example 3 : On any non-empty set M we define 𝑑 as follows: 

𝑑(𝑥, 𝑦) = {
0 𝑖𝑓 𝑥 = 𝑦
1 𝑖𝑓 𝑥 ≠ 𝑦

 

Then d is a metric on M.  This is called the discrete metric on M. 

Proof : Clearly, 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦. 

Also, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = {
0 𝑖𝑓 𝑥 = 𝑦
1 𝑖𝑓 𝑥 ≠ 𝑦

  

∴ 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑀. 

Now let 𝑥, 𝑦, 𝑧 ∈ 𝑀 

Case (i) 𝑥 = 𝑧 

Then 𝑑(𝑥, 𝑧) = 0. 

Also, 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 0. 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Case (ii) 𝑥 ≠ 𝑧 

Then 𝑑(𝑥, 𝑧) = 1. 

Also, since x, z are distinct, y cannot be equal to both x and z. 

Hence, either 𝑦 ≠ 𝑥 or 𝑦 ≠ 𝑧. 

∴ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 1. 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Thus 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

Hence, d is a metric on M. 

Example 4 : In 𝑅𝑛 we define 𝑑(𝑥, 𝑦) = [∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 ] 1/2 where 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛) and 

𝑦 = (𝑦1, 𝑦2, …… . 𝑦𝑛).  Then d is a metric on 𝑅𝑛.  This is called the usual metric on 𝑅𝑛 . 

Proof : 𝑑(𝑥, 𝑦) = [∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 ] 1/2 ≥ 0. 

𝑑(𝑥, 𝑦) = 0 ⇔ [∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

] 1/2 = 0 

⇔ (𝑥𝑖 − 𝑦𝑖)
2 = 0 for all i=1,2,......n. 

⇔ 𝑥𝑖 = 𝑦𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,… . . 𝑛. 

⇔ (𝑥1, 𝑥2, … . , 𝑥𝑛) = (𝑦1, 𝑦2, …… . 𝑦𝑛) 

⇔ 𝑥 = 𝑦. 

Also, 𝑑(𝑥, 𝑦) = [∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 ] 1/2 = [∑ (𝑦𝑖 − 𝑥𝑖)
2𝑛

𝑖=1 ] 1/2 = 𝑑(𝑦, 𝑥). 

To prove the triangle inequality, take 𝑎𝑖 = 𝑥𝑖 − 𝑦𝑖 , 𝑏𝑖 = 𝑦𝑖 − 𝑧𝑖 𝑎𝑛𝑑 𝑝 = 2 in Minkowski’s 

inequality we get, [∑ (𝑥𝑖 − 𝑧𝑖)
2𝑛

𝑖=1 ]
1

2 ≤ [∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 ] 
1

2 + [∑ (𝑦𝑖 − 𝑥𝑖)
2𝑛

𝑖=1 ] 
1

2 
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𝑖. 𝑒. , 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

 ∴ d is a metric on 𝑅𝑛 . 

Note : 𝑅𝑛 with usual metric is called the n-dimensional Euclidean space. 

Example 5: Consider 𝑅𝑛 .  Let 𝑝 > 1.  we define 𝑑(𝑥, 𝑦) = [∑ (𝑥𝑖 − 𝑦𝑖)
𝑝𝑛

𝑖=1 ] 1/𝑝 where 𝑥 =

(𝑥1, 𝑥2, … . , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, …… . 𝑦𝑛).  Then d is a metric on 𝑅𝑛.   

 The proof is similar to that of example 4. 

Example 6 : Let 𝑥, 𝑦 ∈ 𝑅2.  Then 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2) where 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑅.  We 

define 𝑑(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2|.  Then 𝑑 is a metric on 𝑅2. 

Proof : 𝑑(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2| ≥ 0. 

𝑑(𝑥, 𝑦) = 0 ⇔ |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2| = 0 

⇔ |𝑥1 − 𝑦1| = 0 𝑎𝑛𝑑 |𝑥2 − 𝑦2| = 0 

⇔ 𝑥1 = 𝑦1 𝑎𝑛𝑑 𝑥2 = 𝑦2 

⇔ (𝑥1, 𝑥2) = (𝑦1, 𝑦2) 

⇔ 𝑥 = 𝑦. 

𝑑(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2| 

= |𝑦1 − 𝑥1| + |𝑦2 − 𝑥2| 

= 𝑑(𝑦, 𝑥). 

Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑅2. 

𝑑(𝑥, 𝑧) = |𝑥1 − 𝑧1| + |𝑥2 − 𝑧2| 

= |𝑥1 − 𝑦1 + 𝑦1 − 𝑧1| + |𝑥2 − 𝑦2 + 𝑦2 − 𝑧2| 

≤ {|𝑥1 − 𝑦1| + |𝑦1 − 𝑧1|} + {|𝑥2 − 𝑦2| + |𝑦2 − 𝑧2|} 

= {|𝑥1 − 𝑦1| + |𝑥2 − 𝑦2|} + {|𝑦1 − 𝑧1| + |𝑦2 − 𝑧2|} 

= 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Hence d is a metric on 𝑅𝑛 . 

Example 8: Let 𝑐1, 𝑐2, ……… . . , 𝑐𝑛 be given fixed positive real numbers.  Let 𝑥, 𝑦 ∈ 𝑅𝑛 where 

𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, …… . 𝑦𝑛).  We define 𝑑(𝑥, 𝑦) = ∑ 𝑐𝑖|𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 .  Then d 

is a metric on 𝑅𝑛 . 

Note : A non-empty set M can be provided with different metrics.  For example, 𝑅𝑛 has been 

provided with five different metrics as seen from examples 4 to 8. 
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Example 9 : Let 𝑝 ≥ 1.  Let 𝑙𝑝 denote the set of all sequences (𝑥𝑛) such that ∑ |𝑥𝑛|
𝑝∞

1  is 

convergent.  Define 𝑑(𝑥, 𝑦) = [∑ |𝑥𝑛 − 𝑦𝑛|
𝑝∞

𝑛=1 ]1/𝑝 where 𝑥 = (𝑥𝑛) and 𝑦 = (𝑦𝑛).  Then d is 

a metric on 𝑙𝑝. 

Proof : Let 𝑎, 𝑏 ∈ 𝑙𝑝. 

First we prove that 𝑑(𝑎, 𝑏) is a real number. 

By Minkowski’s inequality we have, 

 [∑ (𝑎𝑖 + 𝑏𝑖)
𝑝𝑛

𝑖=1 ]
1

𝑝 ≤ [∑ |𝑎𝑖|
𝑝𝑛

𝑖=1 ] 
1

𝑝 + [∑ |𝑏𝑖|
𝑝𝑛

𝑖=1 ] 
1

𝑝 ......................... (1) 

Since 𝑎, 𝑏 ∈ 𝑙𝑝 the right hand side of (1) has a finite limit as 𝑛 → ∞. 

∴ [∑ (𝑎𝑖 + 𝑏𝑖)
𝑝𝑛

𝑖=1 ]
1

𝑝 is aconvergent series. 

Similarly we can prove that [∑ (𝑎𝑖 − 𝑏𝑖)
𝑝𝑛

𝑖=1 ]
1

𝑝 is also convergent series and hence 

d(a,b) is a real number. 

Now, taking limit as 𝑛 → ∞ in (1) we get 

[∑ (𝑎𝑖 + 𝑏𝑖)
𝑝∞

𝑖=1 ]
1

𝑝 ≤ [∑ |𝑎𝑖|
𝑝∞

𝑖=1 ] 
1

𝑝 + [∑ |𝑏𝑖|
𝑝∞

𝑖=1 ] 
1

𝑝 ................. (2) 

Obviously 𝑑(𝑥, 𝑦) ≥ 0. 

𝑑(𝑥, 𝑦) = 0 𝑖𝑓𝑓 𝑥 = 𝑦 

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑙𝑝. 

Taking 𝑎𝑖 = 𝑥𝑖 − 𝑦𝑖  𝑎𝑛𝑑 𝑏𝑖 = 𝑦𝑖 − 𝑧𝑖 in (2) we get 

[∑(𝑥𝑖 − 𝑦𝑖 + 𝑦𝑖 − 𝑧𝑖)
𝑝

∞

𝑖=1

]

1
𝑝

≤ [∑|𝑥𝑖 − 𝑦𝑖|
𝑝

∞

𝑖=1

] 
1
𝑝 + [∑|𝑦𝑖 − 𝑧𝑖|

𝑝

∞

𝑖=1

] 
1
𝑝 

[∑(𝑥𝑖 − 𝑧𝑖)
𝑝

∞

𝑖=1

]

1
𝑝

≤ [∑|𝑥𝑖 − 𝑦𝑖|
𝑝

∞

𝑖=1

] 
1
𝑝 + [∑|𝑦𝑖 − 𝑧𝑖|

𝑝

∞

𝑖=1

] 
1
𝑝 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Hence, d is a metric on 𝑙𝑝. 

Note :  In particular, 𝑙2 is a metric space with the metric defined by 𝑑(𝑥, 𝑦) =

[∑ |𝑥𝑛 − 𝑦𝑛|
2∞

𝑛=1 ]1/2. 

Example 10 : Let M be the set of all bounded real valued functions defined on a non-empty 

set E.  Define 𝑑(𝑓, 𝑔) = sup{|𝑓(𝑥) − 𝑔(𝑥)|/𝑥 ∈ 𝐸}.  Then d is a metric on M. 

Proof : 𝑑(𝑓, 𝑔) = 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ 𝐸} ≥ 0. 
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Also, 𝑑(𝑓, 𝑔) = 0 ⇔ 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ 𝐸} = 0 

⇔ |𝑓(𝑥) − 𝑔(𝑥)| = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸 

⇔ 𝑓(𝑥) = 𝑔(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸 

⇔ 𝑓 = 𝑔. 

Also, 𝑑(𝑓, 𝑔) = 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑔(𝑥)|} 

= 𝑠𝑢𝑝{|𝑔(𝑥) − 𝑓(𝑥)|} 

= 𝑑(𝑔, 𝑓). 

Now, let 𝑓, 𝑔, ℎ ∈ 𝑀. 

We have, |𝑓(𝑥) − ℎ(𝑥)| ≤ |𝑓(𝑥) − 𝑔(𝑥)| + |𝑔(𝑥) − ℎ(𝑥)| 

𝑠𝑢𝑝|𝑓(𝑥) − ℎ(𝑥)| ≤ 𝑠𝑢𝑝|𝑓(𝑥) − 𝑔(𝑥)| + 𝑠𝑢𝑝|𝑔(𝑥) − ℎ(𝑥)| 

∴ 𝑑(𝑓, ℎ) ≤ 𝑑(𝑓, 𝑔) + 𝑑(𝑔, ℎ). 

Hence, d is a metric on M. 

Example 11 : Let M be the set of all sequences in R.  Let 𝑥, 𝑦 ∈ 𝑀 and let 𝑥 = (𝑥𝑛) and 𝑦 =

(𝑦𝑛).  Define 𝑑(𝑥, 𝑦) = ∑
|𝑥𝑛−𝑦𝑛|

2𝑛(1+|𝑥𝑛−𝑦𝑛|)
.∞

𝑛=1   Then d is a metric on M. 

Proof : Let 𝑥, 𝑦 ∈ 𝑀.  First we prove that d(x,y) is a real number ≥ 0. 

We have 
|𝑥𝑛−𝑦𝑛|

2𝑛(1+|𝑥𝑛−𝑦𝑛|)
≤

1

2𝑛
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. 

Also, ∑
1

2𝑛
∞
𝑛=1  is a convergent series. 

 ∴ ∑
|𝑥𝑛−𝑦𝑛|

2𝑛(1+|𝑥𝑛−𝑦𝑛|)

∞
𝑛=1  is a convergent series. [By Comparison test] 

                    ∴ 𝑑(𝑥, 𝑦) is a real number and 𝑑(𝑥, 𝑦) ≥ 0. 

𝑑(𝑥, 𝑦) = 0 ⇔ ∑
|𝑥𝑛 − 𝑦𝑛|

2𝑛(1 + |𝑥𝑛 − 𝑦𝑛|)
= 0

∞

𝑛=1

 

⇔ |𝑥𝑛 − 𝑦𝑛| = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

⇔ 𝑥𝑛 = 𝑦𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

⇔ 𝑥 = 𝑦. 

Also, 𝑑(𝑥, 𝑦) = ∑
|𝑥𝑛−𝑦𝑛|

2𝑛(1+|𝑥𝑛−𝑦𝑛|)

∞
𝑛=1  

= ∑
|𝑦𝑛 − 𝑥𝑛|

2𝑛(1 + |𝑦𝑛 − 𝑥𝑛|)

∞

𝑛=1

 

= 𝑑(𝑦, 𝑥). 

Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑀.  Then 
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|𝑥𝑛 − 𝑧𝑛|

(1 + |𝑥𝑛 − 𝑧𝑛|)
= 1 −

1

(1 + |𝑥𝑛 − 𝑧𝑛|)
 

≤ 1 −
1

(1 + |𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛|)
 

=
1 + |𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛| − 1

(1 + |𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛|)
 

=
|𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛|

(1 + |𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛|)
 

=
|𝑥𝑛 − 𝑦𝑛|

(1 + |𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛|)
+

|𝑦𝑛 − 𝑧𝑛|

(1 + |𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛|)
 

≤
|𝑥𝑛 − 𝑦𝑛|

(1 + |𝑥𝑛 − 𝑦𝑛|)
+

|𝑦𝑛 − 𝑧𝑛|

(1 + |𝑦𝑛 − 𝑧𝑛|)
 

       Multiplying both sides of this inequality by 
1

2𝑛
 and taking the limit from 𝑛 = 1 𝑡𝑜 ∞ we 

get ∑
|𝑥𝑛−𝑧𝑛|

2𝑛(1+|𝑥𝑛−𝑧𝑛|)

∞
𝑛=1 ≤ ∑

|𝑥𝑛−𝑦𝑛|

(1+|𝑥𝑛−𝑦𝑛|)
+ ∑

|𝑦𝑛−𝑧𝑛|

(1+|𝑦𝑛−𝑧𝑛|)

∞
𝑛=1

∞
𝑛=1 . 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Hence, d is a metric on 𝑀. 

Example 12 : Let 𝑙∞ denote the set of all bounded sequence of real numbers.  let 𝑥 = (𝑥𝑛) and 

𝑦 = (𝑦𝑛) ∈ 𝑙∞.  Define d on 𝑙∞ as 𝑑(𝑥, 𝑦) = 𝑙𝑢𝑏|𝑥𝑛 − 𝑦𝑛|.  Then d is a metric on 𝑙∞. 

Proof : 𝑑(𝑥, 𝑦) = 𝑙𝑢𝑏|𝑥𝑛 − 𝑦𝑛| ≥ 0.  

𝑑(𝑥, 𝑦) = 0 ⇔ 𝑙𝑢𝑏|𝑥𝑛 − 𝑦𝑛| = 0 

⇔ |𝑥𝑛 − 𝑦𝑛| = 0 𝑓𝑜𝑟 1 ≤ 𝑛 < ∞ 

⇔ 𝑥𝑛 = 𝑦𝑛  𝑓𝑜𝑟 1 ≤ 𝑛 < ∞ 

⇔ (𝑥𝑛) = (𝑦𝑛) ⇔ 𝑥 = 𝑦. 

𝑑(𝑥, 𝑦) = 𝑙𝑢𝑏|𝑥𝑛 − 𝑦𝑛| 

= 𝑙𝑢𝑏|𝑦𝑛 − 𝑥𝑛| 

= 𝑑(𝑦, 𝑥). 

       Now, let 𝑧 = (𝑧𝑛). 

        Now, |𝑥𝑛 − 𝑧𝑛| ≤ |𝑥𝑛 − 𝑦𝑛| + |𝑦𝑛 − 𝑧𝑛| 

≤ 𝑙𝑢𝑏|𝑥𝑛 − 𝑦𝑛| + 𝑙𝑢𝑏|𝑦𝑛 − 𝑧𝑛| 

= 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

∴ 𝑙𝑢𝑏|𝑥𝑛 − 𝑧𝑛| ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Hence, d is a metric on 𝑙∞. 
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Solved Problems : 

Problem 1 : Let 𝑑1 and 𝑑2 be two metrics on M.  Define 𝑑(𝑥, 𝑦) = 𝑑1(𝑥, 𝑦) + 𝑑2(𝑥. 𝑦).  Prove 

that d is a metric on M. 

Solution : Since, 𝑑1 and 𝑑2 are two metrics on M, we have  

𝑑1(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑀 

𝑑1(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

𝑑1(𝑥, 𝑦) = 𝑑1(𝑦, 𝑥)  for all 𝑥, 𝑦 ∈ 𝑀 

𝑑1(𝑥, 𝑧) ≤ 𝑑1(𝑥, 𝑦) + 𝑑1(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 

and  

𝑑2(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑀 

𝑑2(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

𝑑2(𝑥, 𝑦) = 𝑑2(𝑦, 𝑥)  for all 𝑥, 𝑦 ∈ 𝑀 

𝑑2(𝑥, 𝑧) ≤ 𝑑2(𝑥, 𝑦) + 𝑑2(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 

𝑑(𝑥, 𝑦) = 𝑑1(𝑥, 𝑦) + 𝑑2(𝑥, 𝑦) ≥ 0  

𝑑(𝑥, 𝑦) = 0 ⇔ 𝑑1(𝑥, 𝑦) + 𝑑2(𝑥. 𝑦) = 0 

⇔ 𝑑1(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑑2(𝑥. 𝑦) = 0 

⇔ 𝑥 = 𝑦. 

𝑑(𝑥, 𝑦) = 𝑑1(𝑥, 𝑦) + 𝑑2(𝑥. 𝑦) 

= 𝑑1(𝑦, 𝑥) + 𝑑2(𝑦, 𝑥) 

= 𝑑(𝑦, 𝑥). 

 

Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

𝑑1(𝑥, 𝑧) ≤ 𝑑1(𝑥, 𝑦) + 𝑑1(𝑦, 𝑧)& 𝑑2(𝑥, 𝑧) ≤ 𝑑2(𝑥, 𝑦) + 𝑑2(𝑦, 𝑧) 

𝐴𝑑𝑑𝑖𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑡𝑤𝑜 𝑤𝑒 𝑔𝑒𝑡 

𝑑1(𝑥, 𝑧) + 𝑑2(𝑥, 𝑧) ≤ (𝑑1(𝑥, 𝑦) + 𝑑2(𝑥, 𝑦)) + (𝑑1(𝑦, 𝑧) + 𝑑2(𝑦, 𝑧)) 

𝑖. 𝑒. , 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

                                                     ∴ 𝑑 is a metric on M. 

Problem 2 : Determine whether 𝑑(𝑥, 𝑦) defined on R by 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 is a metric or not. 

Solution : Let 𝑥, 𝑦 ∈ 𝑅. 

                  𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 ≥ 0. 

𝑑(𝑥, 𝑦) = 0 ⇔ (𝑥 − 𝑦)2 = 0 

⇔ 𝑥 = 𝑦. 
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𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)2 = (𝑦 − 𝑥)2 = 𝑑(𝑦, 𝑥). 

But triangle inequality does not hold. 

Take 𝑥 = −5, 𝑦 = −4 𝑎𝑛𝑑 𝑧 = 4. 

Then 𝑑(𝑥, 𝑦) = (−5 + 4)2 = 1 

𝑑(𝑦, 𝑧) = (−4 − 4)2 = 64 

𝑑(𝑥, 𝑧) = (4 + 5)2 = 81 

Here, 𝑑(𝑥, 𝑧) > 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Hence triangle inequality does not hold. 

∴ 𝑑 is not a metric on R. 

Problem 3 : If 𝑑 is a metric on M, is 𝑑2 is a metric on M? 

Solution : Consider 𝑑(𝑥, 𝑦) defined on R by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. 

               From Example 1, we have d is a metric on R. 

            But, 𝑑2(𝑥, 𝑦) = |𝑥 − 𝑦|2 = (𝑥 − 𝑦)2. 

 But 𝑑2 is not a metric. [From Problem 2]. 

Problem 4 : If d is a metric on M, prove that √𝑑 is a metric on M. 

Solution : Let 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

          Since, 𝑑(𝑥, 𝑦) ≥ 0, we have √𝑑(𝑥, 𝑦) ≥ 0. 

          Also, √𝑑(𝑥, 𝑦) = √𝑑(𝑦, 𝑥) 

         Now, 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

∴ √𝑑(𝑥, 𝑧) ≤ √𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

≤ √𝑑(𝑥, 𝑦) + √𝑑(𝑦, 𝑧) 

                   Hence, √𝑑 is a metric on M. 

Problem 5 : Let (𝑀, 𝑑) be a metric space.  Define 𝑑1(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
.  Prove that 𝑑1 is a metric 

on M. 

Solution : 𝑑1(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
≥ 0 [𝑠𝑖𝑛𝑐𝑒, 𝑑(𝑥, 𝑦) ≥ 0] 

𝑑1(𝑥, 𝑦) = 0 ⇔
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦)
= 0 

⇔ 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦. [∵ 𝑑 𝑖𝑠 𝑎 𝑚𝑒𝑡𝑟𝑖𝑐] 

𝑑1(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦)
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                 =
𝑑(𝑦, 𝑥)

1 + 𝑑(𝑦, 𝑥)
 

          = 𝑑1(𝑦, 𝑥) 

       Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

              Then 𝑑1(𝑥, 𝑧) =
𝑑(𝑥,𝑧)

1+𝑑(𝑥,𝑧)
 

= 1−
1

1 + 𝑑(𝑥, 𝑧)
 

≤ 1 −
1

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
 

=
1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) − 1

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
 

=
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
 

=
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
+

𝑑(𝑦, 𝑧)

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
 

≤
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦)
+

𝑑(𝑦, 𝑧)

1 + 𝑑(𝑦, 𝑧)
 

= 𝑑1(𝑥, 𝑦) + 𝑑1(𝑦, 𝑧). 

         Thus, 𝑑1(𝑥, 𝑧) ≤ 𝑑1(𝑥, 𝑦) + 𝑑1(𝑦, 𝑧). 

 Hence,  𝑑1 is a metric on M. 

Problem 6 : Let (M,d) be a metric space.  Define 𝑑1(𝑥, 𝑦) = min{1, 𝑑(𝑥, 𝑦)}.  Prove that 𝑑1 is 

a metric on M. 

Solution : 𝑑1(𝑥, 𝑦) = min{1, 𝑑(𝑥, 𝑦)} ≥ 0. 

∴ 𝑑1(𝑥, 𝑦) ≥ 0. 

𝑑1(𝑥, 𝑦) = 0 ⇔ min{1, 𝑑(𝑥, 𝑦)} 0 

⇔ 𝑑(𝑥, 𝑦) = 0 

⇔ 𝑥 = 𝑦.            

      Also, 𝑑1(𝑥, 𝑦) = min{1, 𝑑(𝑥, 𝑦)} 

= min{1, 𝑑(𝑦, 𝑥)} 

= 𝑑(𝑦, 𝑥).              

        Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

        Then 𝑑1(𝑥, 𝑧) = min{1, 𝑑(𝑥, 𝑧)} ≤ 1. 

            To prove : 𝑑1(𝑥, 𝑧) ≤ 𝑑1(𝑥, 𝑦) + 𝑑1(𝑦, 𝑧). 

           If 𝑑1(𝑥, 𝑦) = 1 𝑜𝑟 𝑑1(𝑦, 𝑧) = 1 the  inequality is obvious. 



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   12 

 

      Let 𝑑1(𝑥, 𝑦) < 1 𝑎𝑛𝑑 𝑑1(𝑦, 𝑧) < 1.    

      Then, 𝑑1(𝑥, 𝑦) + 𝑑1(𝑦, 𝑧) = min{1, 𝑑(𝑥, 𝑦)} + min{1, 𝑑(𝑦, 𝑧)} 

= 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

≥ 𝑑(𝑥, 𝑧)                    

≥ min{1, 𝑑(𝑥, 𝑧)}     

= 𝑑1(𝑥, 𝑧).                  

          Thus, 𝑑1(𝑥, 𝑧) ≤ 𝑑1(𝑥, 𝑦) + 𝑑1(𝑥, 𝑧). 

   ∴  𝑑1 is a metric on M. 

Problem 7 : Let M be a non-empty set.  Let 𝑑:𝑀 ×𝑀 → 𝑅 be a function such that  

                   (𝑖)𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦. 

        (𝑖𝑖)𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

Prove that d is a metric on M. 

Solution : Put 𝑦 = 𝑥 in (ii). 

           We have, 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑥, 𝑧). 

 ∴ 0 ≤ 2𝑑(𝑥, 𝑧)  by (i)   

∴ 𝑑(𝑥, 𝑧) ≥ 0. 

      Now to prove 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

 Put 𝑧 = 𝑥 in (ii) w get 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥) + 𝑑(𝑦, 𝑥). 

𝑖. 𝑒. , 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑦, 𝑥)  𝑢𝑠𝑖𝑛𝑔 (𝑖) 

 Since this is true for all 𝑥, 𝑦 ∈ 𝑀 we have 𝑑(𝑦, 𝑥) ≤ 𝑑(𝑥, 𝑦). 

 Hence, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

 Now (ii) can be written as 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) which is the triangle inequality. 

 ∴ 𝑑 is a metric on M. 

Problem 8 : If (𝑀1, 𝑑1), (𝑀2, 𝑑2), , . . . , (𝑀𝑛 , 𝑑𝑛) are metric spaces then 𝑀1 ×𝑀2 × ………… .×

𝑀𝑛 is a metric space with metric d defined by 𝑑(𝑥, 𝑦) = ∑ 𝑑𝑖(𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1  where 𝑥 =

(𝑥1, 𝑥2, … . , 𝑥𝑛); 𝑦 = (𝑦1, 𝑦2, …… . , 𝑦𝑛). 

Solution : 𝑑(𝑥, 𝑦) = ∑ 𝑑𝑖(𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1 ≥ 0. 

        Also, 𝑑(𝑥, 𝑦) = 0 ⇔ ∑ 𝑑𝑖(𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1 = 0 

⇔ 𝑑𝑖(𝑥𝑖, 𝑦𝑖) = 0𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,…… . . 𝑛. 

⇔ 𝑥𝑖 = 𝑦𝑖𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, …… . . 𝑛. 

    ⇔ (𝑥1, 𝑥2, … . , 𝑥𝑛) = (𝑦1, 𝑦2, …… . , 𝑦𝑛) 

⇔ 𝑥 = 𝑦.                                                  
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Also, 𝑑(𝑥, 𝑦) = ∑ 𝑑𝑖(𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1  

=∑𝑑𝑖(𝑦𝑖 , 𝑥𝑖)

𝑛

𝑖=1

 

= 𝑑(𝑦, 𝑥).            

Now, let 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

𝑑(𝑥, 𝑧) =∑𝑑𝑖(𝑥𝑖, 𝑧𝑖)

𝑛

𝑖=1

 

≤∑[𝑑𝑖(𝑥𝑖, 𝑦𝑖) + 𝑑𝑖(𝑦𝑖 , 𝑧𝑖)]

𝑛

𝑖=1

 

=∑𝑑𝑖(𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1

+∑𝑑𝑖(𝑦𝑖, 𝑧𝑖)

𝑛

𝑖=1

 

= 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

∴ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

Hence, d is a metric on 𝑀. 

Problem 9: In a metric space (𝑀, 𝑑) prove that |𝑑(𝑥, 𝑧) − 𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑥, 𝑦)  for    all 𝑥, 𝑦, 𝑧 ∈

𝑀. 

Solution : let 𝑥, 𝑦, 𝑧 ∈ 𝑀. 

 We have 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

 ∴ 𝑑(𝑥, 𝑧) − 𝑑(𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑦).                           .................. (i) 

           Interchanging x and y in (i) we get 

𝑑(𝑦, 𝑧) − 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑦, 𝑥) = 𝑑(𝑥, 𝑦) 

  ∴ 𝑑(𝑦, 𝑧) − 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦).                           .................. (ii) 

 From (i) and (ii) we get |𝑑(𝑥, 𝑧) − 𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑥, 𝑦). 

BOUNDED SETS IN A METRIC SPACE 

Definition : Let (M,d) be a metric space.  We say that a subset A of M is bounded if there 

exista a positive real numbr k such that 𝑑(𝑥, 𝑦) ≤ 𝑘 for all 𝑥, 𝑦 ∈ 𝐴. 

 

Example 1 : Any finite subset A of a metric space (M,d) is bounded. 

Proof : Let A be any finite subset of M. 

 If 𝐴 = ∅, then A is obviously bounded. 



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   14 

 

 Let 𝐴 ≠ ∅.  Then {𝑑(𝑥, 𝑦)/ 𝑥, 𝑦 ∈ 𝐴} is a finite set of real numbers. 

       Let 𝑘 = max {𝑑(𝑥, 𝑦)/𝑥, 𝑦 ∈ 𝐴}. 

         Clearly, 𝑑(𝑥, 𝑦) ≤ 𝑘 for all 𝑥, 𝑦 ∈ 𝐴. 

                        ∴ A is bounded. 

Example 2 : [0, 1] is a bounded subset of R with usual metric since 𝑑(𝑥, 𝑦) ≤ 1 for all 𝑥, 𝑦 ∈

[0,1]. 

More generally any finite interval and any subset of R which is contained in a finite interval 

are bounded subsets of R. 

Example 3 : (0,∞) is an unbounded subset of R. 

Example 4 : If we consider R with discrete metric, then (0,∞) is bounded subsets of R, since 

𝑑(𝑥, 𝑦) ≤ 1 for all 𝑥, 𝑦 ∈ (0,∞). 

More generally, any subset of a discrete metric space M is a bounded subset of M.   

Example 5 : In 𝑙2 let 𝑒1 = (1,0,0,… ,0, . . ), 𝑒2 = (0,1,0,…… ,0,… . . ), 𝑒3 = (0,0,1,0,… ,0. … . ), 

........   Let 𝐴 = {𝑒1, 𝑒2, 𝑒2, …… , 𝑒𝑛 , ………}.  Then A is a bounded subset of 𝑙2. 

Proof : 𝑑(𝑒𝑛 , 𝑒𝑚) = {√
2  𝑖𝑓 𝑛 ≠ 𝑚
0 𝑖𝑓 𝑛 = 𝑚.

 

 𝑑(𝑒𝑛, 𝑒𝑚) = √2 for all 𝑒𝑛 , 𝑒𝑚 ∈ 𝐴. 

              ∴ 𝐴 is a bounded set in 𝑙2. 

Example 6 : Let (𝑀, 𝑑) be a metric space.  Define 𝑑1(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
. 

       We know that (𝑀, 𝑑1) is also a metric space. 

        Also, 𝑑1(𝑥, 𝑦) < 1 for all 𝑥, 𝑦 ∈ 𝑀. 

       Hence, (𝑀, 𝑑1) is a bounded metric space. 

Definition : Let (M, d) be a metric space.  Let 𝐴 ⊆ 𝑀.  Then the diameter of A, denoted by 

d(A), is defined by 𝑑(𝐴) = 𝑙. 𝑢. 𝑏. {𝑑(𝑥, 𝑦)/𝑥, 𝑦 ∈ 𝐴} .  

Note 1 : A non-empty set A is a bounded set iff d(A) is finite. 

Note 2 : Let 𝐴, 𝐵 ⊆ 𝑀.  Then 𝐴 ⊆ 𝐵 ⇒ 𝑑(𝐴) ≤ 𝑑(𝐵). 

Example 1 : The diameter of any non-empty subset in a discrete metric space is 1. 

Example 2 : In R the diameter of any interval is equal to the length of the interval.  For example, 

the diameter of [0, 1] is 1. 
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Example 3 : In any metric space 𝑑(∅) = −∞. 

OPEN BALL (OPEN SPHERE) IN A METRIC SPACE 

Definition : Let (M,d) be a metric space.  Let 𝑎 ∈ 𝑀 and r be a positive real number.  Then the 

open ball or the open sphere with centre a and radius r denoted by 𝐵𝑑(𝑎, 𝑟) is the subset of M 

given by 𝐵𝑑(𝑎, 𝑟) = {𝑥 ∈ 𝑀 / 𝑑(𝑎, 𝑥) < 𝑟}.  

When the metric d under consideration is clear we write 𝐵(𝑎, 𝑟) instead of 𝐵𝑑(𝑎, 𝑟). 

Note 1 : 𝐵(𝑎, 𝑟) is always non-empty since it contains atleast its centre a. 

Note 2 : 𝐵(𝑎, 𝑟) is a bounded set. 

                           For, let 𝑥, 𝑦 ∈ 𝐵(𝑎, 𝑟). 

                        𝑥 ∈ 𝐵(𝑎, 𝑟) ⇒ 𝑑(𝑎, 𝑥) < 𝑟 

                        𝑦 ∈ 𝐵(𝑎, 𝑟) ⇒ 𝑑(𝑎, 𝑦) < 𝑟 

∴ 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑎) + 𝑑(𝑎, 𝑦) < 𝑟 + 𝑟 = 2𝑟. 

           Thus, 𝑑(𝑥, 𝑦) < 2𝑟. 

                      Hence, 𝐵(𝑎, 𝑟) is bounded. 

Example 1 : Consider R with usual metric.  Let 𝑎 ∈ 𝑅. 

                        Then 𝐵(𝑎, 𝑟) = {𝑥 ∈ 𝑅/ 𝑑(𝑎, 𝑥) < 𝑟} 

= {𝑥 ∈ 𝑅 /|𝑥 − 𝑎| < 𝑟} 

= {𝑥 ∈ 𝑅 /−𝑟 < 𝑥 − 𝑎 < 𝑟} 

= {𝑥 ∈ 𝑅 /𝑎 − 𝑟 < 𝑥 < 𝑎 + 𝑟} 

= (𝑎 − 𝑟, 𝑎 + 𝑟). 

Example 2 : Consider C with usual metric.  Let 𝑎 ∈ 𝐶. 

                        Then 𝐵(𝑎, 𝑟) = {𝑧 ∈ 𝐶/ 𝑑(𝑎, 𝑧) < 𝑟} 

= {𝑧 ∈ 𝐶 /|𝑧 − 𝑎| < 𝑟} 

       This is the interior of the circle with centre a and radius r. 

Example 3 : In 𝑅2 with usual metric B(a, r) is the interior of the circle with centre a and radius 

r. 

Example 4 : Let d be the discrete metric on M.  Then 𝐵(𝑎, 𝑟) = {
𝑀 𝑖𝑓 𝑟 > 1
{𝑎} 𝑖𝑓 𝑟 ≤ 1

. 

Proof : We have, 𝑑(𝑥, 𝑦) = {
1 𝑖𝑓 𝑥 ≠ 𝑦
0 𝑖𝑓 𝑥 = 𝑦

 

              Let 𝑎 ∈ 𝑀.  Let r be any positive real number. 
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        Case (i) 𝐿𝑒𝑡 𝑟 > 1.  Then, 𝐵(𝑎, 𝑟) = {𝑥 ∈ 𝑀/𝑑(𝑎, 𝑥) < 𝑟}. 

           Clearly every point 𝑥 ∈ 𝑀 such that 𝑑(𝑎, 𝑥) < 𝑟. 

  Hence, 𝐵(𝑎, 𝑟) = 𝑀. 

          Case (ii) Let 𝑟 ≤ 1. 

                   In this case for any point 𝑥 ≠ 𝑎, 𝑑(𝑎, 𝑥) = 1 ≥ 𝑟. 

                             Hence, 𝑥 ∉ 𝐵(𝑎, 𝑟) so that 𝐵(𝑎, 𝑟) = {𝑎}. 

∴ 𝐵(𝑎, 𝑟) = {
𝑀 𝑖𝑓 𝑟 > 1
{𝑎} 𝑖𝑓 𝑟 ≤ 1

. 

Example 5 : Consider 𝑀 = [0,1] with usual metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. 

 Here, 𝐵 (0,
1

2
) = {𝑥 ∈ [0,1]/ 𝑑(0, 𝑥) <

1

2
} 

= {𝑥 ∈ [0,1]/|𝑥| <
1

2
} 

= [0,
1

2
). 

Example 6 : Consider 𝑅2 with the metric d given by  

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| 

𝑇ℎ𝑒𝑛 𝐵((0,0), 1) = {(𝑥, 𝑦) ∈ 𝑅2/ |𝑥 − 0| + |𝑦 − 0| < 1}  

= {(𝑥, 𝑦) ∈ 𝑅2/ |𝑥| + |𝑦| < 1} 

       This is the interior of the square bounded by the four lines 𝑥 + 𝑦 = 1; −𝑥 + 𝑦 = 1;−𝑥 −

𝑦 = 1; 𝑥 − 𝑦 = 1.   𝑖. 𝑒. , 𝑥 + 𝑦 = 1; −𝑥 + 𝑦 = 1; 𝑥 + 𝑦 = −1; 𝑥 − 𝑦 = 1. 

Example 7 : Consider 𝑅2 with the metric d given by  

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = max{|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|} 

𝑇ℎ𝑒𝑛 𝐵((0,0), 1) = {(𝑥, 𝑦) ∈ 𝑅2/ max {|𝑥 − 0| + |𝑦 − 0|] < 1}  

= {(𝑥, 𝑦) ∈ 𝑅2/max{ |𝑥| + |𝑦|} < 1} 

       This is the interior of the square with vertices (1,1), (−1,1), (−1,−1)𝑎𝑛𝑑 (1,−1). 

Exercises  

1.  In R with usual metric find  

(i) 𝐵(−1,1) (ii) B(1,1) (iii) B(1/2 , 1) 

2. In [0,1] with usual metric find  

(i) B(1/2,1) (ii) B(0,1/4) (iii) B(1,1/2) (iv( B(1/4, ¼) 



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   17 

 

OPEN SETS 

Definition : Let (M,d) be a metric space.   Let A be a subset of M.  Then A is said to be open 

in M if for every 𝑥 ∈ 𝐴 there exists a positive real number r such that 𝐵(𝑥, 𝑟) ⊆ 𝐴. 

Example 1 : In R with ususal metric (0, 1) is an open set. 

Proof : Let 𝑥 ∈ (0,1). 

 Choose 𝑟 = min{𝑥 − 0, 1 − 𝑥} = min{𝑥, 1 − 𝑥}. 

               Clearly, 𝑟 > 0 and 𝐵(𝑥, 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) ⊆ (0,1). 

  ∴ (0,1) is open. 

Example 2 : In R with usual metric [0, 1) is not open since no open ball with centre 0 is 

containd in [0,1). 

Example 3 : Consider M=[0,2) with usual metric.  Let 𝐴 = [0,1) ⊆ 𝑀.  Then A is open in M. 

Proof : Let 𝑥 ∈ [0,1) 

                If 𝑥 = 0 then 𝐵 (0,
1

2
) = [0,

1

2
) ⊆ 𝐴. 

                If 𝑥 ≠ 0 choose 𝑟 = min{𝑥, 1 − 𝑥}. 

                    Clearly 𝑟 > 0 and 𝐵(𝑥. 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) ⊆ [0,1). 

  ∴ 𝐴 is open in M. 

Example 4 : Any open interval (a,b) is an open set in R with usual metric. 

 Proof :  Let 𝑥 ∈ (𝑎, 𝑏). 

 Choose 𝑟 = min{𝑥 − 𝑎, 𝑏 − 𝑥} 

               Clearly, 𝑟 > 0 and 𝐵(𝑥, 𝑟) ⊆ (𝑎, 𝑏). 

  ∴ (𝑎, 𝑏) is an open set. 

Note : Similarly we can prove that (−∞, 𝑎) and (𝑎,∞) are open sets. 

Example 5 : In R with usual metric, the set {0} is not an open set since, any open ball with 

centre 0 is not contained in {0}. 

Example 6 : In R with usual metric any finite non-empty subset A of R is not an open set. 

     Proof : Any open ball in R is a bounded open interval which is an infinite subset of R. 

       Hence, it cannot be contained in the finite subset A. 

       Hence, A is not open in R. 

Example 7 : Q is not open in R. 
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      Proof : Let 𝑥 ∈ 𝑄. 

        Then, for any 𝑟 > 0 the interval (𝑥 − 𝑟, 𝑥 + 𝑟) contains both rational and irrational 

numbers. 

          ∴ (𝑥 − 𝑟, 𝑥 + 𝑟) is not a subset of Q. 

        Hence, Q is not open in R. 

Example 8 : The set of irrational numbers I is not open in R. 

      Proof : Let 𝑥 ∈ 𝐼. 

        Then, for any 𝑟 > 0 the interval (𝑥 − 𝑟, 𝑥 + 𝑟) contains both rational and irrational 

numbers. 

          ∴ (𝑥 − 𝑟, 𝑥 + 𝑟) is not a subset of I. 

        Hence, I is not open in R. 

Example 9 : Z is not open in R. 

      Proof : Let 𝑥 ∈ 𝑍. 

        Then, for any 𝑟 > 0 the interval (𝑥 − 𝑟, 𝑥 + 𝑟) is not a subset of Z. 

        Hence, Z is not open in R. 

Example 10 : In a discrete metric space M every subset A is open. 

 Proof : If 𝐴 = ∅, trivially A is open. 

                            Let 𝐴 ≠ ∅. 

              Let 𝑥 ∈ 𝐴. 

                  Then 𝐵 (𝑥,
1

2
) = {𝑥} ⊆ 𝐴. 

                  Hence, A is open in M. 

Theorem 1.1 : In any metric space M, (i) ∅ is open. 

                                                             (ii) M is open. 

      Proof : (i) Trivially ∅ is an open set. 

 (ii) Let 𝑥 ∈ 𝑀.  Clearly for any 𝑟 > 0,𝐵(𝑥, 𝑟) ⊆ 𝑀.  Hence, M is an open set. 

Theorem 1.2 : In any metric space (M,d) each open ball is an open set. 

Proof : Let 𝐵(𝑎, 𝑟) be an open ball in M. 

            Let 𝑥 ∈ 𝐵(𝑎, 𝑟) 

            Then 𝑑(𝑎, 𝑥) < 𝑟. 

∴ 0 < 𝑟 − 𝑑(𝑎, 𝑥).  𝑖. 𝑒. , 𝑟 − 𝑑(𝑎, 𝑥) > 0. 
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         Let 𝑟1 = 𝑟 − 𝑑(𝑎, 𝑥). 

         We claim that 𝐵(𝑥, 𝑟1) ⊆ 𝐵(𝑎, 𝑟). 

                    Let 𝑦 ∈  𝐵(𝑥, 𝑟1) 

∴ 𝑑(𝑥, 𝑦) < 𝑟1 = 𝑟 − 𝑑(𝑎, 𝑥). 

 ∴ 𝑑(𝑥, 𝑦) + 𝑑(𝑎, 𝑥) < 𝑟.                              ........................ (1) 

            Now, 𝑑(𝑎, 𝑦) ≤ 𝑑(𝑎, 𝑥) + 𝑑(𝑥, 𝑦) < 𝑟 [𝐹𝑟𝑜𝑚 (1)] 

∴ 𝑑(𝑎, 𝑦) < 𝑟. 

∴ 𝑦 ∈ 𝐵(𝑎, 𝑟). 

         Hence, 𝐵(𝑥, 𝑟1) ⊆ 𝐵(𝑎, 𝑟). 

  ∴ 𝐵(𝑎, 𝑟) is an open set. 

Theorem 1.3 : In any metric space the union of family of open sets is open. 

Proof : Let (𝑀, 𝑑) be a metric space, 

           Let {𝐴𝑖/𝑖 ∈ 𝐼} be a family of open sets in M. 

                  Let 𝐴 = ⋃ 𝐴𝑖.𝑖∈𝐼  

          If 𝐴 = ∅  then A is open. 

         ∴ Let 𝐴 ≠ ∅. 

             Let 𝑥 ∈ 𝐴.   Then 𝑥 ∈ 𝐴𝑖 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∈ 𝐼. 

           Since 𝐴𝑖 is open, there exists an open ball B(x, r) such that 𝐵(𝑥, 𝑟) ⊆ 𝐴𝑖 . 

∴ 𝐵(𝑥, 𝑟) ⊆ 𝐴. 

            Hence A is open. 

Theorem 1.4 : In any metric space the intersection of a finite number of open sets is open. 

Proof : Let (𝑀, 𝑑) be a metric space. 

 Let 𝐴1, 𝐴2, ……… , 𝐴𝑛 be open sets in M. 

              Let 𝐴 = 𝐴1 ∪ 𝐴2 ∪ ………∪ 𝐴𝑛 . 

          If 𝐴 = ∅ then A is open. 

         ∴ Let 𝐴 ≠ ∅. 

             Let 𝑥 ∈ 𝐴.   Then 𝑥 ∈ 𝐴𝑖 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1,2,…… . . 𝑛. 

           Since 𝐴𝑖 is open, there is a positive real number 𝑟𝑖 such that 𝐵(𝑥, 𝑟𝑖) ⊆ 𝐴𝑖. .........(1) 

             Let 𝑟 = min{𝑟1, 𝑟2, ………… . . , 𝑟𝑛} 

        Obviously r is a positive real number and 𝐵(𝑥, 𝑟) ⊆ 𝐵(𝑥, 𝑟𝑖) for all 𝑖 = 1,2, . . . . . . . , 𝑛. 

Hence 𝐵(𝑥, 𝑟) ⊆ 𝐴𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,…… . , 𝑛 [𝑓𝑟𝑜𝑚 (1)]. 
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∴ 𝐵(𝑥, 𝑟) ⊆⋂𝐴𝑖.

𝑛

𝑖=1

 

∴ 𝐵(𝑥, 𝑟) ⊆ 𝐴. 

∴ 𝐴 is open. 

Note : The intersection of an infinite number of open sts in a metric space need not be open. 

 For example, Consider R with usual metric. 

 Let 𝐴𝑛 = (−
1

𝑛
,
1

𝑛
). 

            Then 𝐴𝑛 is open in R for all n. 

            But ⋂ 𝐴𝑛 =
∞
𝑛=1 {0} which is not open in R. 

Characterization of open sets in terms of open balls 

Theorem 1.5 : Let (𝑀, 𝑑) be a metric space.  Let A be any non-empty subset of M.  Then A is 

open iff A can be expressed as th union of family of  open balls. 

Proof : Let A be any non-empty subset of M.   

Assume that A is open. 

To prove, A can be expressed as the union of family of open balls. 

Let 𝑥 ∈ 𝐴. 

Since, A is an open set there exists an open ball 𝐵(𝑥, 𝑟𝑥) such that 𝐵(𝑥, 𝑟𝑥) ⊆ 𝐴. 

Clearly, ⋃ 𝐵(𝑥, 𝑟𝑥) = 𝐴.𝑥∈𝐴  

Thus A is the union of family of open balls. 

Conversely, Assume that A can be expressed as the union of family of open balls. 

To prove, A is open. 

By Theorem 1.2, each open ball is an open set. 

By Theorem 1.3, In any metric space, the union of family of open sets is open. 

Hence, A is open. 

SOLVED PROBLEMS  

Problem 1 : Let (𝑀, 𝑑) be a metric space.  Let x,y be two distinct points in M.  Prove that there 

exists two disjoint open balls with centres x and y respectively. 

Solution : Since, 𝑥 ≠ 𝑦, 𝑑(𝑥, 𝑦) = 𝑟 > 0. 

                         Consider the open balls 𝐵 (𝑥,
1

4
𝑟)  𝑎𝑛𝑑 𝐵 (𝑦,

1

4
𝑟). 

               We claim that 𝐵 (𝑥,
1

4
𝑟) ∩  𝐵 (𝑦,

1

4
𝑟) = ∅. 
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        Suppose 𝐵 (𝑥,
1

4
𝑟) ∩  𝐵 (𝑦,

1

4
𝑟) ≠ ∅. 

            Let 𝑧 ∈ 𝐵 (𝑥,
1

4
𝑟) ∩  𝐵 (𝑦,

1

4
𝑟) 

∴ 𝑧 ∈ 𝐵 (𝑥,
1

4
𝑟)  𝑎𝑛𝑑 𝑧 ∈  𝐵 (𝑦,

1

4
𝑟) 

∴ 𝑑(𝑥, 𝑧) <
1

4
𝑟 𝑎𝑛𝑑 𝑑(𝑦, 𝑧) <

1

4
𝑟. 

                Now, 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) <
1

4
𝑟 +

1

4
𝑟 =

1

2
𝑟. 

        which is a contradiction. 

               Hence, 𝐵 (𝑥,
1

4
𝑟) ∩  𝐵 (𝑦,

1

4
𝑟) = ∅. 

Problem 2 : Let (M, d) be a metric space.  Let 𝑥 ∈ 𝑀.  Show that {𝑥}𝑐 is open. 

Solution : Let 𝑦 ∈ {𝑥}𝑐 .  Then 𝑦 ≠ 𝑥. 

          ∴ 𝑑(𝑥, 𝑦) = 𝑟 > 0. 

         Clearly 𝐵 (𝑦,
1

2
𝑟) ⊆  {𝑥}𝑐 . 

 ∴  {𝑥}𝑐 is open. 

Problem 3 : Let (M,d) be a metric space.  Show that every subset of M is open iff {𝑥} is open 

for all 𝑥 ∈ 𝑀. 

Solution : Suppose every subset of M is open. 

 Then obviously {𝑥} is open for all 𝑥 ∈ 𝑀. 

 Conversely, assume that {𝑥} is open for all 𝑥 ∈ 𝑀. 

 To prove A is open. 

 Let A be any subset of M. 

          If 𝐴 = ∅  then A is open. 

         ∴ Let 𝐴 ≠ ∅. Then 𝐴 = ⋃ {𝑥}.𝑥∈𝐴  

 By hypothesis, {𝑥} is open. 

 Since arbitrary union of open sets is open, A is open. 

Problem 4 : Let 𝐴 = {(𝑎𝑛)/(𝑎𝑛) ∈ 𝑙2 𝑎𝑛𝑑 [∑ 𝑎𝑛
2∞

𝑛=1 ]
1

2 < 1}.  Prove that A is open in 𝑙2. 

Solution : We first prove that 𝐴 = 𝐵(𝟎, 1) where 𝟎 = (0,0,…… . . ). 

 Let 𝑥 ∈ 𝐴.  Hence,  ∑ 𝑥𝑛
2∞

𝑛=1 < 1. 

∴ 𝑑(𝑥, 𝟎) = [∑(𝑥𝑛 − 0)2
∞

𝑛=1

]

1/2

= [∑(𝑥𝑛)
2

∞

𝑛=1

]

1/2

< 1. 
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        Thus, 𝑑(𝑥, 𝟎) < 1. 

∴ 𝑥 ∈ 𝐵(𝟎, 1) 

∴ 𝐴 ⊆ 𝐵(𝟎, 1)………………(1) 

 Now, let 𝑦 ∈ 𝐵(𝟎, 1) 

∴ 𝑑(𝟎, 𝑦) < 1. 

∴ [∑(𝑦𝑛 − 0)2
∞

𝑛=1

]

1
2

< 1 

∴ [∑(𝑦𝑛)
2

∞

𝑛=1

]

1/2

< 1. 

∴ 𝑦 ∈ 𝐴. 

∴ 𝐵(𝟎, 1) ⊆ 𝐴 ………………(2) 

      From (1) and (2) we get 𝐴 = 𝐵(𝟎, 1). 

 Now the open ball 𝐵(𝟎, 1)is an open set. 

 Hence, A is an open set. 

Problem 5 : Prove that any open subset of R can be expressed as the union of a countable 

number of mutually disjoint open intervals. 

Solution : Let A be an open subset of R. 

 Let 𝑥 ∈ 𝐴. 

        Then there exists a positive real number r such that 𝐵(𝑥, 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) ⊆ 𝐴. 

        Thus there exists an open interval I such that 𝑥 ∈ 𝐼 and 𝐼 ⊆ 𝐴. 

        Let 𝐼𝑥 denote the largest open interval such that 𝑥 ∈ 𝐼 and 𝐼𝑥 ⊆ 𝐴. 

          Clearly, ⋃ 𝐼𝑥 = 𝐴.𝑥∈𝐴  

      We claim that 𝐼𝑥 = 𝐼𝑦 𝑜𝑟 𝐼𝑥 ∩ 𝐼𝑦 = ∅. 

         Suppose 𝐼𝑥 ∩ 𝐼𝑦 ≠ ∅. 

 Then 𝐼𝑥 ∪ 𝐼𝑦  is an open interval contained in A. 

 But 𝐼𝑥 is the largest open interval such that 𝑥 ∈ 𝐼𝑥  𝑎𝑛𝑑 𝐼𝑥 ⊆ 𝐴. 

 ∴ 𝐼𝑥 ∪ 𝐼𝑦 = 𝐼𝑥 so that 𝐼𝑦 ⊆ 𝐼𝑥 . 

            Similarly, 𝐼𝑥 ⊆ 𝐼𝑦 . 

 ∴ 𝐼𝑥 = 𝐼𝑦. Thus the intervals 𝐼𝑥 are mutually disjoint. 

             We claim that the set 𝐹 = {𝐼𝑥/ 𝑥 ∈ 𝐴} is countable. 

          Now for each 𝐼𝑥 ∈ 𝐹 choose a rational number 𝑟𝑥 ∈ 𝐼𝑥.   
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          Since the intervals 𝐼𝑥 are mutually disjoint 𝐼𝑥 ≠ 𝐼𝑦 ⇒ 𝑟𝑥 ≠ 𝑟𝑦. 

       ∴ 𝑓: 𝐹 → 𝑄 defined by 𝑓(𝐼𝑥) = 𝑟𝑥 is 1-1. 

 ∴ 𝐹 is equivalent to a subset of Q which is countable. 

 ∴ 𝐹 is countable. 

 

EQUIVALENT METRICS 

Definition : Let 𝑑 𝑎𝑛𝑑 𝜌 be the two metrics on M.  Then the metrics 𝑑 𝑎𝑛𝑑 𝜌 are said to be 

equivalent if the open sets of (𝑀, 𝜌) are the open sets of (𝑀, 𝑑) and conversely. 

Problem 6 : Let (𝑀, 𝑑) be a metric space.  Define 𝜌(𝑥, 𝑦) = 2𝑑(𝑥, 𝑦).  Then  𝑑 𝑎𝑛𝑑 𝜌 are 

equivalent metrics. 

Solution : We know that 𝜌 is a metric on M. 

          We first prove that 𝐵𝑑(𝑎, 𝑟) = 𝐵𝜌(𝑎, 2𝑟). 

          Let 𝑥 ∈ 𝐵𝑑(𝑎, 𝑟) 

∴ 𝑑(𝑎, 𝑥) < 𝑟. 

∴ 2𝑑(𝑎, 𝑥) < 2𝑟. 

∴ 𝜌(𝑥, 𝑦) < 2𝑟. 

 Hence. 𝑥 ∈ 𝐵𝜌(𝑎, 2𝑟). 

∴ 𝐵𝑑(𝑎, 𝑟) ⊆ 𝐵𝜌(𝑎, 2𝑟)   ……… . . . (1) 

        Now, let 𝑥 ∈ 𝐵𝜌(𝑎, 2𝑟) 

∴ 𝜌(𝑎, 𝑥) < 2𝑟. 

∴
1

2
𝜌(𝑎, 𝑥) < 𝑟. 

∴ 𝑑(𝑎, 𝑥) < 𝑟. 

∴ 𝑥 ∈ 𝐵𝑑(𝑎, 𝑟) 

∴ 𝐵𝜌(𝑎, 2𝑟) ⊆ 𝐵𝑑(𝑎, 𝑟)  ……… . . . (2) 

∴ 𝐵𝑦 (1)𝑎𝑛𝑑 (2)𝑤𝑒 𝑔𝑒𝑡, 𝐵𝑑(𝑎, 𝑟) = 𝐵𝜌(𝑎, 2𝑟)…………(3) 

         Now, let G be any open subset in (M,d).  Let 𝑎 ∈ 𝐺. 

 Hence, there exists 𝑟 > 0 such that 𝐵𝑑(𝑎, 𝑟) ⊆ 𝐺. 

∴ 𝐵𝜌(𝑎, 2𝑟) ⊆ 𝐺 (𝑢𝑠𝑖𝑛𝑔 (3)) 

 ∴ 𝐺 is open in (𝑀, 𝜌). 

        Conversely, suppose 𝐺 is open in (𝑀, 𝜌). 
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Let 𝑎 ∈ 𝐺. 

 Hence, there exists 𝑟 > 0 such that 𝐵𝜌(𝑎, 𝑟) ⊆ 𝐺. 

∴ 𝐵𝑑 (𝑎,
1

2
𝑟) ⊆ 𝐺 (𝑢𝑠𝑖𝑛𝑔 (3)) 

 ∴ 𝐺 is open in (𝑀, 𝑑). 

 ∴ 𝑑 𝑎𝑛𝑑 𝜌 are equivalent metrics. 

Problem 7 : Let (𝑀, 𝑑) be a metric space.  Define 𝜌(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
.  Prove that 𝑑 𝑎𝑛𝑑 𝜌 are 

equivalent metrics on M. 

Solution : We know that 𝜌 is a metric on M. 

          We first prove that 𝐵𝜌(𝑎, 𝑟) = 𝐵𝑑 (𝑎,
𝑟

1−𝑟
)  𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 0 < 𝑟 < 1. 

          Let 𝑥 ∈ 𝐵𝜌(𝑎, 𝑟) 

∴ 𝜌(𝑎, 𝑥) < 𝑟. 

∴
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦)
< 𝑟. 

∴ 𝑑(𝑥, 𝑦) < 𝑟(1 + 𝑑(𝑥, 𝑦)) = 𝑟 + 𝑟 𝑑(𝑥, 𝑦). 

∴ 𝑑(𝑥, 𝑦) − 𝑟𝑑(𝑥, 𝑦) < 𝑟 

∴ 𝑑(𝑥, 𝑦)(1 − 𝑟) < 𝑟 

∴ 𝑑(𝑥, 𝑦) <
𝑟

1 − 𝑟
 (𝑠𝑖𝑛𝑐𝑒 0 < 𝑟 < 1) 

 Hence. 𝑥 ∈ 𝐵𝑑 (𝑎,
𝑟

1−𝑟
). 

∴ 𝐵𝜌(𝑎, 𝑟) ⊆ 𝐵𝑑 (𝑎,
𝑟

1 − 𝑟
)   ……… . . . (1) 

        Now, let 𝑥 ∈ 𝐵𝑑 (𝑎,
𝑟

1−𝑟
) 

∴ 𝑑(𝑎, 𝑥) <
𝑟

1 − 𝑟
 

∴ (1 − 𝑟)𝑑(𝑎, 𝑥) < 𝑟 

∴ 𝑑(𝑎, 𝑥) − 𝑟𝑑(𝑎, 𝑥) < 𝑟 

∴ 𝑑(𝑎, 𝑥) < 𝑟 + 𝑟𝑑(𝑎, 𝑥) 

∴ 𝑑(𝑎, 𝑥) < 𝑟(1 + 𝑑(𝑎, 𝑥)) 

∴
𝑑(𝑎, 𝑥)

(1 + 𝑑(𝑎, 𝑥))
< 𝑟 

∴ 𝜌(𝑎, 𝑥) < 𝑟 

∴ 𝑥 ∈ 𝐵𝜌(𝑎, 𝑟) 
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∴ 𝐵𝑑 (𝑎,
𝑟

1 − 𝑟
) ⊆ 𝐵𝜌(𝑎, 𝑟)  ……… . . . (2) 

∴ 𝐵𝑦 (1)𝑎𝑛𝑑 (2)𝑤𝑒 𝑔𝑒𝑡, 𝐵𝜌(𝑎, 𝑟) = 𝐵𝑑 (𝑎,
𝑟

1 − 𝑟
) …………(3) 

         Now, let G be any open subset in (M, 𝜌).  Let 𝑎 ∈ 𝐺. 

 Hence, there exists 𝑟 > 0 such that 𝐵𝜌(𝑎, 𝑟) ⊆ 𝐺. 

         Without loss of generality we may assume that 𝑟 < 1. 

∴ 𝐵𝑑 (𝑎,
𝑟

1 − 𝑟
) ⊆ 𝐺 (𝑢𝑠𝑖𝑛𝑔 (3)) 

 ∴ 𝐺 is open in (𝑀, 𝑑). 

        Conversely, suppose 𝐺 is open in (𝑀, 𝑑). 

Let 𝑎 ∈ 𝐺. 

 Hence, there exists 𝑟 > 0 such that 𝐵𝑑(𝑎, 𝑟) ⊆ 𝐺. 

∴ 𝐵𝜌 (𝑎,
𝑟

1 − 𝑟
) ⊆ 𝐺 (𝑢𝑠𝑖𝑛𝑔 (3)) 

 ∴ 𝐺 is open in (𝑀, 𝜌). 

 ∴ 𝑑 𝑎𝑛𝑑 𝜌 are equivalent metrics. 

Problem 8 : If 𝑑 𝑎𝑛𝑑 𝜌 are metrics on M and if there exists 𝑘 > 1 such that 
1

𝑘
𝜌(𝑥, 𝑦) ≤

𝑑(𝑥, 𝑦) ≤ 𝑘𝜌(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑀.  Prove that 𝑑 𝑎𝑛𝑑 𝜌 are equivalent metrics. 

Solution : Suppose that there exists 𝑘 > 1 such that 
1

𝑘
𝜌(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) ≤ 𝑘𝜌(𝑥, 𝑦) ....... (1) 

for all 𝑥, 𝑦 ∈ 𝑀. 

 Let 𝐺 be an open set in (𝑀, 𝑑). 

Let 𝑎 ∈ 𝐺. 

 Hence, there exists 𝑟 > 0 such that 𝐵𝑑(𝑎, 𝑟) ⊆ 𝐺. .............. (2) 

 We now claim that 𝐵𝜌 (𝑎,
𝑟

𝑘
) ⊆ 𝐺 

               Let 𝑥 ∈ 𝐵𝜌 (𝑎,
𝑟

𝑘
) 

            ∴ 𝜌(𝑎, 𝑥) <
𝑟

𝑘
. 

∴ 𝑘 𝜌(𝑎, 𝑥) < 𝑟. 

∴ 𝑑(𝑎, 𝑥) < 𝑟.   [𝑢𝑠𝑖𝑛𝑔 1] 

∴ 𝑥 ∈ 𝐵𝑑(𝑎, 𝑟) ⊆ 𝐺 [𝐵𝑦 (2)] 

∴ 𝑥 ∈ 𝐺. 

             Hence, 𝐵𝜌 (𝑎,
𝑟

𝑘
) ⊆ 𝐺. 
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          ∴ 𝐺 is open in (𝑀, 𝜌). 

           Conversely, let G be open in (𝑀, 𝜌). 

Let 𝑎 ∈ 𝐺. 

Hence, there exists 𝑟 > 0 such that 𝐵𝜌(𝑎, 𝑟) ⊆ 𝐺 ………… . (3) 

We now claim that 𝐵𝑑 (𝑎,
𝑟

𝑘
) ⊆ 𝐺 

               Let 𝑥 ∈ 𝐵𝑑 (𝑎,
𝑟

𝑘
) 

            ∴ 𝑑(𝑎, 𝑥) <
𝑟

𝑘
. 

∴ 𝑘 𝑑(𝑎, 𝑥) < 𝑟. 

∴ 𝜌(𝑎, 𝑥) < 𝑟.   [𝑢𝑠𝑖𝑛𝑔 1] 

∴ 𝑥 ∈ 𝐵𝜌(𝑎, 𝑟) ⊆ 𝐺 [𝐵𝑦 (2)] 

∴ 𝑥 ∈ 𝐺. 

             Hence, 𝐵𝑑 (𝑎,
𝑟

𝑘
) ⊆ 𝐺. 

          ∴ 𝐺 is open in (𝑀, 𝑑). 

 Hence 𝑑 𝑎𝑛𝑑 𝜌 are equivalent metrics on M. 

Exercises  

1. Determine which of the following subsets of R are open in R with usual metric. 

(i) R (ii) N (iii) Z  (iv) Q  (v) (1,2)U(3,4)  

 (vi) (0,∞) (vii) (-∞,𝑎) 

2. Prove that the complement of any finite subset of a metric space M is open. 

SUBSPACE 

Definition : Let (𝑀, 𝑑) be a metric space.  Let 𝑀1 be a non-empty subset of M.  Then 𝑀1 is 

also a metric space with the same metric d.  We say that (𝑀1, 𝑑) is a subspace of (𝑀, 𝑑).  

Note : If 𝑀1 is a subspace of M a set which is open in 𝑀1 need not be open in M. 

          For example, if M=R with usual metric and 𝑀1 = [0,1] then [0,
1

2
) is open in 𝑀1 but not 

open in M. 

Theorem 1.6 : Let M be a metric space and 𝑀1 a subspace of M.  Let 𝐴1 ⊆ 𝑀1.  Then 𝐴1 is 

open in 𝑀1 iff there exists an open set A in M such that 𝐴1 = 𝐴 ∩𝑀1. 

Proof : Let 𝑀1 be a subspace of M. 
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       We denote 𝐵1(𝑎, 𝑟) the open ball in 𝑀1 with centre a and radius r. 

       Then 𝐵1(𝑎, 𝑟) = {𝑥 ∈ 𝑀1 / 𝑑(𝑎, 𝑥) < 𝑟} . 

        Also, 𝐵(𝑎, 𝑟) = {𝑥 ∈ 𝑀 / 𝑑(𝑎, 𝑥) < 𝑟} . 

              Hence, 𝐵1(𝑎, 𝑟) = 𝐵(𝑎, 𝑟) ∩ 𝑀1.    ..................... (1) 

        Now, let 𝐴1 be an open set in 𝑀1. 

        𝐴1 = ⋃ 𝐵1(𝑥, 𝑟(𝑥))     𝑏𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 1.5𝑥∈𝐴1  

= ⋃[𝐵(𝑥, 𝑟(𝑥)) ∩ 𝑀1]   𝑏𝑦 (1)

𝑥∈𝐴1

 

= [⋃ 𝐵(𝑥, 𝑟(𝑥))]  

𝑥∈𝐴1

∩ 𝑀1 

    = 𝐴 ∩𝑀1 𝑤ℎ𝑒𝑟𝑒 𝐴 = ⋃ 𝐵(𝑥, 𝑟(𝑥))  𝑥∈𝐴1 which is open in M. 

 Conversely, let 𝐴1 = 𝐴 ∩𝑀1 where A is open in M. 

             We claim that 𝐴1 is open in 𝑀1. 

                Let 𝑥 ∈ 𝐴1. 

∴ 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝑀1. 

           Since A is open in M there exists a positive real number 𝑟 such that 𝐵(𝑥, 𝑟) ⊆ 𝐴. 

∴ 𝑀1 ∩ 𝐵(𝑥, 𝑟) ⊆ 𝑀1 ∩ 𝐴. 

𝑖. 𝑒. , 𝐵1(𝑥, 𝑟) ⊆ 𝐴1 [𝑢𝑠𝑖𝑛𝑔 (1)] 

        Hence, 𝐴1 is open in 𝑀1. 

Example 1 : Let 𝑀 = 𝑅 and 𝑀1 = [0,1].  Let 𝐴1 = [0,
1

2
). 

                  Now, 𝐴1 = [0,
1

2
) = (−

1

2
,
1

2
) ∩ [0,1] and (−

1

2
,
1

2
) is open in R. 

 ∴ [0,
1

2
) is open in [0,1]. 

Example 2 : Let 𝑀 = 𝑅 and 𝑀1 = [1,2] ∪ [3,4].  

          Let 𝐴1 = [1,2].  Then 𝐴1 = [1,2] = (
1

2
,
5

2
) ∩ 𝑀1. 

 ∴ [1,2] is open in 𝑀1. 

               Similarly, [3,4] is open in 𝑀1. 

              Hence, [1,2] ∪ [3,4] is open in 𝑀1. 

Problem 1 : Let 𝑀1 be a subspace of a metric space M.  Prove that every open set 𝐴1 of 𝑀1 is 

open in M iff 𝑀1 itself is open in M. 

Solution : Suppose every open set 𝐴1 of 𝑀1 is open in M. 
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                 Now, 𝑀1 is open in 𝑀1. 

               Hence, 𝑀1 is open in M. 

         Conversely, suppose 𝑀1 is open in M. 

          Let 𝐴1 be an open set in 𝑀1. 

      Then by theorem 1.6, there exists an open set A in M such that 𝐴1 = 𝐴 ∩𝑀1. 

      Since A and 𝑀1 are open in 𝑀1 we get 𝐴1 is open in M. 

INTERIOR OF A SET  

Definition : Let (M, d) be a metric space.  Let 𝐴 ⊆ 𝑀.  Let 𝑥 ∈ 𝐴.  Then x is said to be an 

interior point of A if there exists a positive real number r such that 𝐵(𝑥, 𝑟) ⊆ 𝐴. 

        The set of all interior points of A is called the interior of A and it is denoted by IntA. 

Note : 𝐼𝑛𝑡𝐴 ⊆ 𝐴. 

Example 1 : Consider R with usual metric. 

(a) Let 𝐴 = [0,1].  Clearly 0 and 1 aree not interior points of A and any point 𝑥 ∈ (0,1) 

is an interior point of A.  Hence, 𝐼𝑛𝑡𝐴 = (0,1). 

(b) Let 𝐴 = 𝑄.  Let 𝑥 ∈ 𝑄. 

Then for any positive real number r, 𝐵(𝑥, 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) contains irrational 

numbers. 

∴ 𝐵(𝑥, 𝑟) is not a subset of Q. 

∴ x is not an interior point of Q. 

Since 𝑥 ∈ 𝑄 is arbitrary, no point of Q is an interior point. 

∴ 𝐼𝑛𝑡𝑄 = ∅. 

(c) Let A be a finite subset of R.  Then 𝐼𝑛𝑡𝐴 = ∅. 

(d) Let 𝐴 = {0, 1,
1

2
, ……… . ,

1

𝑛
, … . . }.  Then 𝐼𝑛𝑡𝐴 = ∅. 

Example 2 : Consider R with discrete metric. 

 Let 𝐴 = [0,1].  𝐿𝑒𝑡 𝑥 ∈ [0,1]. 

                  Then 𝐵 (𝑥,
1

2
) = {𝑥} ⊆ 𝐴. 

 ∴ 𝑥 is an interior point of A. 

 Since, 𝑥 ∈ [0,1] is arbitrary, IntA=A. 

Example 3 : In a discrete metric space M, IntA=A for any subset A of M. 
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Basic properties of interior 

Theorem 1.7 : Let (M,d) be a metric space.  Let 𝐴,𝐵 ⊆ 𝑀. 

(i) A is open iff 𝐴 = 𝐼𝑛𝑡𝐴.  In particular, 𝐼𝑛𝑡∅ = ∅ and 𝐼𝑛𝑡𝑀 = 𝑀. 

(ii) IntA=Union of all open sets contained in A. 

(iii) IntA is an open subset of A and if B is any other open set contained in A then 𝐵 ⊆

𝐼𝑛𝑡𝐴.  i.e., IntA is the largest open set contained in A. 

(iv) 𝐴 ⊆ 𝐵 ⇒ 𝐼𝑛𝑡𝐴 ⊆ 𝐼𝑛𝑡𝐵. 

(v) 𝐼𝑛𝑡(𝐴 ∩ 𝐵) = 𝐼𝑛𝑡𝐴 ∩ 𝐼𝑛𝑡𝐵. 

(vi) 𝐼𝑛𝑡(𝐴 ∪ 𝐵) ⊇ 𝐼𝑛𝑡𝐴 ∪ 𝐼𝑛𝑡𝐵. 

Proof : (i) From the definition of open set, A is open iff 𝐴 = 𝐼𝑛𝑡𝐴. 

                 Also, 𝐼𝑛𝑡∅ = ∅ and 𝐼𝑛𝑡𝑀 = 𝑀. 

 (ii) Let 𝐺 =∪ {𝐵 / 𝐵 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐴} . 

                  To prove IntA=G. 

                   Let 𝑥 ∈ 𝐼𝑛𝑡𝐴. 

                ∴ There exists a positive real number r such that 𝐵(𝑥, 𝑟) ⊆ 𝐴. 

 Thus 𝐵(𝑥, 𝑟) is an open set contained in A. 

∴ 𝐵(𝑥, 𝑟) ⊆ 𝐺. 

∴ 𝑥 ∈ 𝐺. 

∴ 𝐼𝑛𝑡𝐴 ⊆ 𝐺.   ………………… . . (1) 

 Now, let 𝑥 ∈ 𝐺. 

                 Then there exists an open set B such that 𝑥 ∈ 𝐵 and 𝐵 ⊆ 𝐴. 

          Now, since B is open and 𝑥 ∈ 𝐵 there exists a positive real number r such that 𝐵(𝑥, 𝑟) ⊆

𝐵 ⊆ 𝐴. 

                 ∴ 𝑥 is an interior point of A. 

 Hence, 𝐺 ⊆ 𝐼𝑛𝑡𝐴………………… . . (2) 

 From (1) and (2) , we get G=IntA. 

 (iii) Since union of any collection of open sets is open, (ii)⇒IntA is an open set. 

 Trivially 𝐼𝑛𝑡𝐴 ⊆ 𝐴. 
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            Now, let B be any open set contained in A. 

            Then 𝐵 ⊆ 𝐺 = 𝐼𝑛𝑡𝐴    [𝐹𝑟𝑜𝑚 (𝑖𝑖)] 

             ∴ IntA is the largest open set contained in A. 

(iv ) Let 𝑥 ∈ 𝐼𝑛𝑡𝐴. 

   ∴ There exists a positive real number r such that 𝐵(𝑥, 𝑟) ⊆ 𝐴. 

But 𝐴 ⊆ 𝐵. 

Hence, 𝐵(𝑥, 𝑟) ⊆ 𝐵. 

∴ 𝑥 ∈ 𝐼𝑛𝑡 𝐵 

 Hence, 𝐼𝑛𝑡𝐴 ⊆ 𝐼𝑛𝑡𝐵. 

(v) We have, 𝐴 ∩ 𝐵 ⊆ 𝐴. 

∴ 𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐼𝑛𝑡𝐴 [𝐹𝑟𝑜𝑚 (𝑖𝑣)] 

Also, 𝐴 ∩ 𝐵 ⊆ 𝐵. 

∴ 𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐼𝑛𝑡𝐵 [𝐹𝑟𝑜𝑚 (𝑖𝑣)] 

∴ 𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐼𝑛𝑡𝐴 ∩ 𝐼𝑛𝑡𝐵……… . . (1) 

Now, 𝐼𝑛𝑡𝐴 ⊆ 𝐴; 𝐼𝑛𝑡𝐵 ⊆ 𝐵. 

Hence, 𝐼𝑛𝑡𝐴 ∩ 𝐼𝑛𝑡𝐵 ⊆ 𝐴 ∩ 𝐵. 

Thus, 𝐼𝑛𝑡𝐴 ∩ 𝐼𝑛𝑡𝐵 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝐴 ∩ 𝐵. 

But Int(𝐴 ∩ 𝐵) is the largest open set contained in 𝐴 ∩ 𝐵. 

  ∴ 𝐼𝑛𝑡𝐴 ∩ 𝐼𝑛𝑡𝐵 ⊆ 𝐼𝑛𝑡(𝐴 ∩ 𝐵)……… . . (2) 

From (1) and (2) we get 𝐼𝑛𝑡(𝐴 ∩ 𝐵) = 𝐼𝑛𝑡𝐴 ∩ 𝐼𝑛𝑡𝐵. 

(vi) We have, 𝐴 ⊆ 𝐴 ∪ 𝐵. 

∴ 𝐼𝑛𝑡𝐴 ⊆ 𝐼𝑛𝑡(𝐴 ∪ 𝐵) [𝐹𝑟𝑜𝑚 (𝑖𝑣)] 

Also, 𝐵 ⊆ 𝐴 ∪ 𝐵. ∴ 𝐼𝑛𝑡𝐵 ⊆ 𝐼𝑛𝑡(𝐴 ∪ 𝐵) [𝐹𝑟𝑜𝑚 (𝑖𝑣)] 

∴ 𝐼𝑛𝑡𝐴 ∪ 𝐼𝑛𝑡𝐵 ⊆ 𝐼𝑛𝑡(𝐴 ∪ 𝐵). 

𝑖. 𝑒. , 𝐼𝑛𝑡(𝐴 ∪ 𝐵) ⊇ 𝐼𝑛𝑡𝐴 ∪ 𝐼𝑛𝑡𝐵. 

Note : 𝐼𝑛𝑡(𝐴 ∪ 𝐵) 𝑛𝑒𝑒𝑑 𝑛𝑜𝑡 𝑏𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝐼𝑛𝑡𝐴 ∪ 𝐼𝑛𝑡𝐵. 

 For example, in R with usual metric, consider 𝐴 = (0,2]&𝐵 = (2,3). 

            Then 𝐴 ∪ 𝐵 = (0,3). 

                 Clearly, 𝐼𝑛𝑡(𝐴 ∪ 𝐵) = (0,3). 

             But 𝐼𝑛𝑡𝐴 = (0,2)& 𝐼𝑛𝑡𝐵 = (2,3) 

𝐼𝑛𝑡𝐴 ∪ 𝐼𝑛𝑡𝐵 = (0,2) ∪ (2,3) = (0,3) − {2}. 

∴ 𝐼𝑛𝑡(𝐴 ∪ 𝐵) ≠ 𝐼𝑛𝑡𝐴 ∪ 𝐼𝑛𝑡𝐵. 
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UNIT II 

CLOSED SETS 

Definition : Let (M,d) be a metric space.  Let 𝐴 ⊆ 𝑀.  Then A is said to be closed in M if the 

complement of A is open in M. 

Example 1 : In R with usual metric any closed interval [a,b] is a closed set. 

Proof : [𝑎, 𝑏]𝑐 = 𝑅 − [𝑎, 𝑏] = (−∞, 𝑎) ∪ (𝑏,∞). 

                    Also (−∞, 𝑎)𝑎𝑛𝑑 (𝑏,∞) are open in R. 

              i.e., [𝑎, 𝑏]𝑐 is open in R. 

           Hence, [a,b] is closed in R. 

Example 2 : In R with usual metric [a,b) is neither open nor closed. 

Proof : [a,b) is not open in R since a is not an interior point of [a,b). 

 Now, [𝑎, 𝑏)𝑐 = 𝑅 − [𝑎, 𝑏) = (−∞, 𝑎) ∪ [𝑏,∞) and this set is not open since b is not an 

interior point. 

 ∴ [𝑎, 𝑏) is not closed in R. 

           Hence, [a,b) is neither open nor closed in R. 

Example 3 : In R with usual metric (a,b] is neither open not closed. 

Proof is similar to example 2. 

Example 4 : Z is closed. 

Proof : 𝑍𝑐 = ⋃ (𝑛, 𝑛 + 1).∞
𝑛=1  

          The open interval (n,n+1) is open and the union of open sets is open. 

 ∴ 𝑍𝑐 is open. 

 Hence, Z is closed. 

Example 5 : Q is not closed in R. 

Proof : 𝑄𝑐=the set of irrational which is not open in R. 

        ∴Q is not closed in R. 

Example 6 : The set of irrational numbers is not closed in R. 

 Proof is similar to that of Example 5. 

Example 7 : In R with usual metric every singleton set is closed. 

Proof : Let 𝑎 ∈ 𝑅. 
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            Then {𝑎}𝑐 = 𝑅 − {𝑎} = (−∞, 𝑎) ∪ (𝑎,∞). 

          Since (−∞, 𝑎) 𝑎𝑛𝑑 (𝑎,∞) are both open sets, (−∞, 𝑎) ∪ (𝑎,∞) is open. 

        Thus, {𝑎}𝑐 is open. 

       Hence, {a} is closed. 

Example 8 : Every subset of a discrete metric space is closed. 

Proof : Let (M,d) be a discrete metric space. 

               Let 𝐴 ⊆ 𝑀. 

                Since, every subset of a discrete metric spac is open. 𝐴𝑐 is open. 

  ∴ A is closed. 

Definition : Let (M, d) be a metric space.  Let 𝑎 ∈ 𝑀.  Let r be any positive real number.  Then 

the closed ball or the closed sphere with centre a and radius r denoted by 𝐵𝑑[𝑎, 𝑟], is defined 

by 𝐵𝑑[𝑎, 𝑟] = {𝑥 ∈ 𝑀/𝑑(𝑎, 𝑥) ≤ 𝑟}. 

     When the metric d under consideration is clear we write 𝐵[𝑎, 𝑟] instead of 𝐵𝑑[𝑎, 𝑟]. 

Example 1 : In R with usual metric 𝐵[𝑎, 𝑟] = [𝑎 − 𝑟, 𝑎 + 𝑟]. 

Example 2 : In 𝑅2 with usual metric let 𝑎 = (𝑎1, 𝑎2) ∈ 𝑅2. 

         Then 𝐵[𝑎, 𝑟] = {(𝑥, 𝑦) ∈ 𝑅2/𝑑((𝑎1, 𝑎2)), (𝑥, 𝑦)) ≤ 𝑟} 

                              = {(𝑥, 𝑦) ∈ 𝑅2/(𝑥 − 𝑎1)
2 + (𝑦 − 𝑎2)

2 ≤ 𝑟} 

 Hence, 𝐵[𝑎, 𝑟] is the set of all points which lie within and on the circumference of the 

circle with centre a and radius r. 

Theorem 2.1 : In any metric space every closed ball is a closed set. 

Proof : Let (M,d) be a metric space. 

Let 𝐵[𝑎, 𝑟] be an open ball in M. 

Case (i) Suppose 𝐵[𝑎, 𝑟]𝑐 = ∅ 

  ∴ 𝐵[𝑎, 𝑟]𝑐 is open and hence B[a,r] is closed. 

Case (ii) Suppose 𝐵[𝑎, 𝑟]𝑐 ≠ ∅ 

            Let 𝑥 ∈ 𝐵[𝑎, 𝑟]𝑐 

         ∴ 𝑥 ∉ 𝐵[𝑎, 𝑟] 

            Then 𝑑(𝑎, 𝑥) > 𝑟. 

∴ 𝑑(𝑎, 𝑥) − 𝑟 > 0. 

         Let 𝑟1 = 𝑑(𝑎, 𝑥) − 𝑟. 

         We claim that 𝐵(𝑥, 𝑟1) ⊆ 𝐵[𝑎, 𝑟]𝑐 . 
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                    Let 𝑦 ∈  𝐵(𝑥, 𝑟1) 

∴ 𝑑(𝑥, 𝑦) < 𝑟1 = 𝑑(𝑎, 𝑥) − 𝑟. 

 ∴ 𝑑(𝑥, 𝑦) + 𝑟 < 𝑑(𝑎, 𝑥).                        

∴ 𝑑(𝑎, 𝑥) > 𝑑(𝑥, 𝑦) + 𝑟       ........................ (1) 

            Now, 𝑑(𝑎, 𝑥) ≤ 𝑑(𝑎, 𝑦) + 𝑑(𝑦, 𝑥) 

∴ 𝑑(𝑎, 𝑦) ≥ 𝑑(𝑎, 𝑥) − 𝑑(𝑦, 𝑥) 

> 𝑑(𝑥, 𝑦) + 𝑟 − 𝑑(𝑦, 𝑥)[𝐹𝑟𝑜𝑚 (1)] = 𝑟 

∴ 𝑑(𝑎, 𝑦) > 𝑟. 

∴ 𝑦 ∉ 𝐵(𝑎, 𝑟). 

          Hence, 𝑦 ∈ 𝐵[𝑎, 𝑟]𝑐 

         Hence, 𝐵(𝑥, 𝑟1) ⊆ 𝐵[𝑎, 𝑟]𝑐 . 

           ∴ 𝐵[𝑎, 𝑟]𝑐 is open in M. 

  ∴ 𝐵[𝑎, 𝑟] is closed in M. 

Theorem 2.2 : In any metric space M, (i) ∅ is closed, (ii) M is closed. 

Proof : Since 𝑀𝑐 = ∅ is open, M is closed. 

                   Similarly, ∅𝑐 = 𝑀 is open and hence ∅ is closed. 

Theorem 2.3 : In any metric space arbitrary intersection of closed sets is closed. 

Proof : Let (𝑀, 𝑑) be a metric space, 

           Let {𝐴𝑖/𝑖 ∈ 𝐼} be a family of closed sets in M. 

                  Let 𝐴 = ⋂ 𝐴𝑖.𝑖∈𝐼  

              We claim that A is closed. 

                 We have, (⋂ 𝐴𝑖) 𝑖∈𝐼
𝑐 = ⋃ 𝐴𝑖

𝑐  (𝐵𝑦 𝐷𝑒 − 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠 𝐿𝑎𝑤)𝑖∈𝐼  

          Since 𝐴𝑖 is closed, 𝐴𝑖
𝑐
 is open.  

 ∴ ⋃ 𝐴𝑖
𝑐  𝑖∈𝐼  is open. 

 ∴ (⋂ 𝐴𝑖) 𝑖∈𝐼
𝑐
 is open. 

                      Hence ⋂ 𝐴𝑖𝑖∈𝐼  is closed. 

            Hence A is closed. 

Theorem 2.4 : In any metric space the union of a finite number of closed sets is closed. 

Proof : Let (𝑀, 𝑑) be a metric space. 

 Let 𝐴1, 𝐴2, ……… , 𝐴𝑛 be closed sets in M. 

By De-Morgan’s law, (𝐴1 ∪ 𝐴2 ∪ …… .∪ 𝐴𝑛)
𝑐 = 𝐴1

𝑐 ∩ 𝐴2
𝑐 ∩ ……∩ 𝐴𝑛

𝑐 . 

Since each 𝐴𝑖 is closed, 𝐴𝑖
𝑐
 is open. 
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Since finite intersection of open sets are open, 𝐴1
𝑐 ∩ 𝐴2

𝑐 ∩ ……∩ 𝐴𝑛
𝑐
 is open. 

∴ (𝐴1 ∪ 𝐴2 ∪ …… .∪ 𝐴𝑛)
𝑐 is open. 

∴ 𝐴1 ∪ 𝐴2 ∪ …… .∪ 𝐴𝑛 is closed. 

Note : The union of an infinite number of closed sets in a metric space need not be closed. 

 For example, Consider R with usual metric. 

 Let 𝐴𝑛 = [
1

𝑛
, 1]  𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3,………. 

                Then ⋃ 𝐴𝑛 = ⋃ [
1

𝑛
, 1] = {1} ∪ [

1

2
, 1] ∪ [

1

3
, 1] ∪ …………∞

𝑛=1
∞
𝑛=1  

   = (0,1] which is not closd in R. 

            Hence, ⋃ 𝐴𝑛
∞
𝑛=1  is not closed. 

Theorem 2.5 : Let M b a metric space and 𝑀1 be a subspace of M.  Let 𝐹1 ⊆ 𝑀1.  Then  𝐹1 is 

closed in 𝑀1 iff there exists a set F which is closed in M such that 𝐹1 = 𝐹 ∩𝑀1. 

Proof : Let 𝐹1 be closed in 𝑀1. 

                 ∴ 𝑀1 − 𝐹1 is open in 𝑀1. 

 ∴ 𝑀1 − 𝐹1 = 𝐴 ∩𝑀1 where A is open in M (By theorem 1.6) 

 Now, 𝐹1 = 𝑀1 − (𝐴 ∩𝑀1) = 𝑀1 − 𝐴 = 𝐴𝑐 ∩𝑀1. 

              Also, since A is open in M, 𝐴𝑐 is closed in M. 

           ∴ 𝐹1 = 𝐹 ∩𝑀1 where 𝐹 = 𝐴𝑐  is closed in M. 

    Proof of the converse is similar. 

CLOSURE 

Definition : Let A be a subset of a metric space (M,d).  The closure of A, denoted by 𝐴̅ is 

defined to be the intersection of all closed sets which contain A.  Thus,  

                                                   𝐴̅ =∪ {𝐵/𝐵 is closed in M and 𝐴 ⊆ 𝐵}. 

Note : Since intersection of any collection of closed sets is closed, 𝐴̅ is a closed set.  Further, 

𝐴̅ ⊇ 𝐴.  Also if B is any closed set containing A then 𝐴̅ ⊆ 𝐵.  Thus 𝐴̅ is the smallest closed set 

containing A. 

Theorem 2.6 : A is closed iff 𝐴 = 𝐴̅. 

Proof : Suppose 𝐴 = 𝐴̅. 

         Since 𝐴̅ is closed, A is closed. 

 



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   35 

 

      Conversely, suppose A is closed.  Then the smallest closed set containing A is A itself. 

                Hence 𝐴 = 𝐴̅. 

Note : In particular, (𝑖)∅ = ∅̅    (𝑖𝑖)𝑀 = 𝑀̅       (𝑖𝑖𝑖)𝐴̿ = 𝐴̅. 

Example 1: Consider R with usual metric. 

(a) Let 𝐴 = [0,1].  We know that A is a closed set. 

∴ 𝐴̅ = 𝐴 = [0,1]. 

(b) Let A=(0,1).  Then [0,1] is a closed set containing (0,1).  Obviously [0,1] is the smallest 

closed set containing (0,1). 

∴ 𝐴̅ = [0,1]. 

Example 2 : In a discrete metric space (M,d) any subset A of M is closed.  Hence 𝐴̅ = 𝐴. 

Theorem 2.7 : Let (M,d) be a metric space.  Let 𝐴,𝐵 ⊆ 𝑀. 

Then (i) 𝐴 ⊆ 𝐵 ⇒ 𝐴̅ ⊆ 𝐵̅ 

                  (ii) 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∪ 𝐵̅ 

                (iii) 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐴̅ ∩ 𝐵̅ 

Proof : (i) Let 𝐴 ⊆ 𝐵 

     Now 𝐵̅ ⊇ 𝐵 ⊇ 𝐴. 

       ∴ 𝐵̅ is a closed set containint A. 

      But 𝐴̅ is the smallest closed set containing A. 

       ∴ 𝐴̅ ⊆ 𝐵̅. 

(ii) We have 𝐴 ⊆ 𝐴 ∪ 𝐵. 

∴  𝐴̅ ⊆ 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅. 

          Similarly, 𝐵̅ ⊆ 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ 

 ∴ 𝐴̅ ∪ 𝐵̅ ⊆ 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅.       ............ (1) 

          Now 𝐴̅ is a closed set containing A and 𝐵̅ is closed set containing B. 

              ∴ 𝐴̅ ∪ 𝐵̅ is a closed set containing 𝐴 ∪ 𝐵. 

           But  𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴 ∪ 𝐵. 

         ∴ 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅  ⊆ 𝐴̅ ∪ 𝐵̅.       ............ (2) 

 From (1) and (2) we get 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∪ 𝐵̅. 

(iii) We have, 𝐴 ∩ 𝐵 ⊆ 𝐴 

∴ 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐴̅ 
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 Similarly, 𝐴 ∩ 𝐵 ⊆ 𝐵 

∴ 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐵̅ 

                Hence, 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐴̅ ∩ 𝐵̅. 

Note : 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ need not be equal to 𝐴̅ ∩ 𝐵̅. 

 For example, in R with usual metric, take A=(0,1) and B=(1,2). 

 Then, 𝐴 ∩ 𝐵 = ∅. 

∴ 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = ∅̅ = ∅. 

            But 𝐴̅ ∩ 𝐵̅ = [0,1] ∩ [1,2] = {1}. 

 ∴ 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ ≠ 𝐴̅ ∩ 𝐵̅. 

Note : In a metric space (M,d) if 𝐸1, 𝐸2, …… . . , 𝐸𝑛 are subsets of M then, 

𝐸1 ∪ 𝐸2 ∪ …… . .∪ 𝐸𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐸1̅̅ ̅ ∪ 𝐸2̅̅ ̅ ∪ …………∪ 𝐸𝑛̅̅ ̅. 

LIMIT POINT 

Definition : Let (M,d) be a metric space.  Let 𝐴 ⊆ 𝑀.  Let 𝑥 ∈ 𝑀.  Then x is called a limit point 

or a cluster point or an accumulation point of A if every open ball with centre x contains atleast 

one point of A different from x. 

                          𝑖. 𝑒. , 𝐵(𝑥, 𝑟) ∩ (𝐴 − {𝑥}) ≠ ∅ for all 𝑟 > 0. 

 The set of all limit points of A is called the derived set of A and is denoted by D(A). 

Note : x is not a limit point of A iff there exists an open ball 𝐵(𝑥, 𝑟) such that 𝐵(𝑥, 𝑟) ∩

(𝐴 − {𝑥}) = ∅. 

Example 1 : Consider R with usual metric. 

(a) Let A=[0,1). 

Any open ball with centre 0 is of the form (-r,r) which contains a point of [0,1) other 

than 0.   

Hence 0 is a limit point of [0,1). 

Similarly 1 is a limit point of [0,1). 

2 is not a limit point of A, since (2 −
1

2
, 2 +

1

2
) ∩ [0,1) = (

3

2
,
5

2
) ∩ [0,1) = ∅. 

In this case all points of [0,1] are limit points of [0,1) and  no other point is a limit point. 

 Hence D([0,1)) = [0,1]. 

(b) Let 𝐴 = {1,
1

2
,
1

3
, ………… ,

1

𝑛
, … . . }.  Here 0 is a limit point of A. 
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For, consider any open ball (−𝑟, 𝑟) with centre 0. 

Choose a positive integer n such that 
1

𝑛
< 𝑟. 

Then 
1

𝑛
∈ (−𝑟, 𝑟). 

  ∴ (−𝑟, 𝑟) contains a point of A which is different from 0. 

 ∴ 0 is a limit point of A. 

               1 is not a limit point of A since, (1 −
1

4
, 1 +

1

4
) ∩ (𝐴 − {1}) 

= (
3

4
,
5

4
) ∩ {

1

2
,
1

3
, ……… ,

1

𝑛
, …… } = ∅. 

              In fact any point except zero is not a limit point of A. 

             ∴ 𝐷(𝐴) = {0}. 

(c) Z has no limit point. 

Proof : Let x be any real number. 

          If x is an integer, then 𝐵 (𝑥,
1

2
) = (𝑥 −

1

2
, 𝑥 +

1

2
) does not contain any integer 

other than x.  Hence x is not a limit point of Z. 

          If x is not an integer, let n be the integer which is closest to x. 

       Choose r such that 0 < 𝑟 < |𝑥 − 𝑛|. 

Then 𝐵(𝑥, 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) contains no integer. 

Hence x is not a limit point of Z. 

Since x is arbitrary, Z has no limit point. 

  ∴ 𝐷(𝑍) = ∅. 

(d) Consider Q.  Any real number x is a limit point of Q, since the interval (𝑥 − 𝑟, 𝑥 + 𝑟) 

contains infinite number of rational numbers. 

∴ 𝐷(𝑄) = 𝑅. 

Example 2 : In 𝑅 × 𝑅 with usual metric, 𝐷(𝑄 × 𝑄) = 𝑅 × 𝑅. 

             The proof is similar to example (d) of 1. 

Example 3 : Let (M,d) be a discrete metric space. 

         Let 𝐴 ⊆ 𝑀.  Let 𝑥 ∈ 𝑀. 

             Then 𝐵 (𝑥,
1

2
) ∩ (𝐴 − {𝑥}) = {𝑥} ∩ (𝐴 − {𝑥}) = ∅. 

         ∴ 𝑥 is not a limit point of A. 

          Since 𝑥 ∈ 𝑀 is arbitrary, A has no limit point. 

∴ 𝐷(𝐴) = ∅. 
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      Thus any subset of a discrete metric space has no limit point. 

Example 4 : Consider C with usual metric. 

           Let 𝐴 = {𝑧/|𝑧| < 1}  

          Then 𝐷(𝐴) = {𝑧/|𝑧| ≤ 1}. 

Theorem 2.8 : Let (M,d) be a metric space.  Let 𝐴 ⊆ 𝑀.  Then x is a limit point of A iff each 

open ball with centre x contains an infinite number of points of A. 

Proof : Let x be a limit point of A. 

               To prove each open ball with centre x contains an infinite number of points of A. 

 Suppose an open ball 𝐵(𝑥, 𝑟) contains only a finite number of points of A. 

 Let 𝐵(𝑥, 𝑟) ∩ (𝐴 − {𝑥}) = {𝑥1, 𝑥2, ………… , 𝑥𝑛} 

            Let 𝑟1 = min {𝑑(𝑥, 𝑥𝑖)/𝑖 = 1,2, ……… . , 𝑛} 

 Since 𝑥 ≠ 𝑥𝑖, 𝑑(𝑥, 𝑥𝑖) > 0 for all i=1,2,.......,n and hence 𝑟1 > 0. 

         Also, 𝐵(𝑥, 𝑟) ∩ (𝐴 − {𝑥}) = ∅ 

 ∴ 𝑥 is not a limit point of A which is a contradiction. 

          Hence every open ball with centre x contains infinite number of points of A. 

 Conversely, if each open ball with centre x contains an infinite number of points of A 

then obviously x is a limit point of A. 

Corollary : Any finite subset of a metric space has no limit point. 

Proof : Let A be a finite subset of M. 

 To prove A has no limit point. 

 Suppose A has a limit point say x. 

 Then each open ball with centre x contains infinite number of points of A. 

 This is a contradiction since A is finite. 

 Hence, A has no limit point. 

Theorem 2.9 : Let M be a metric space and 𝐴 ⊆ 𝑀.  Then 𝐴̅ = 𝐴 ∪ 𝐷(𝐴). 

Proof : Let 𝑥 ∈ 𝐴 ∪ 𝐷(𝐴).  We shall prove that 𝑥 ∈ 𝐴̅. 

               Suppose 𝑥 ∉ 𝐴̅ 

 ∴ 𝑥 ∈ 𝑀 − 𝐴̅ and since 𝐴̅ is closed, 𝑀 − 𝐴̅ is open. 

 ∴ 𝐵(𝑥, 𝑟) ∩ 𝐴̅ = ∅ 

           ∴ 𝐵(𝑥, 𝑟) ∩ 𝐴 = ∅ [𝑠𝑖𝑛𝑐𝑒 𝐴 ⊆ 𝐴̅] 

 ∴ 𝑥 ∉ 𝐴 ∪ 𝐷(𝐴) which is a contradiction. 
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 ∴ 𝑥 ∈ 𝐴̅. 

 ∴ 𝐴 ∪ 𝐷(𝐴) ⊆ 𝐴̅.                                 ....................................... (1) 

                Now, let 𝑥 ∈ 𝐴̅. 

            To prove 𝑥 ∈ 𝐴 ∪ 𝐷(𝐴). 

          If 𝑥 ∈ 𝐴 then clearly 𝑥 ∈ 𝐴 ∪ 𝐷(𝐴). 

 Suppose 𝑥 ∉ 𝐴.  We claim that 𝑥 ∈ 𝐷(𝐴). 

   Suppose 𝑥 ∉ 𝐷(𝐴).  Then there exists an open ball 𝐵(𝑥, 𝑟) such that 𝐵(𝑥, 𝑟) ∩ 𝐴 = ∅. 

             ∴ 𝐵(𝑥, 𝑟)𝑐 ⊇ 𝐴. 

              Since 𝐵(𝑥, 𝑟) is open, 𝐵(𝑥, 𝑟)𝑐 is closed. 

 But 𝐴̅ is the smallest closed set containing A. 

             ∴ 𝐴̅ ⊆ 𝐵(𝑥, 𝑟)𝑐 . 

            But 𝑥 ∈ 𝐴̅ and 𝑥 ∉ 𝐵(𝑥, 𝑟)𝑐 which is a contradiction. 

Hence, 𝑥 ∈ 𝐷(𝐴). 

       ∴ 𝑥 ∈ 𝐴 ∪ 𝐷(𝐴). 

            ∴ 𝐴̅ ⊆ 𝐴 ∪ 𝐷(𝐴).                      ........................... (2) 

From (1) and (2) 𝐴̅ = 𝐴 ∪ 𝐷(𝐴). 

Corollary 1 : A is closed iff A contains all its limit points.  i.e., A is closed iff 𝐷(𝐴) ⊆ 𝐴. 

Proof : A is closed ⇔𝐴 = 𝐴̅ [By theorem 2.6] 

 ∴ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐷(𝐴). 

            If 𝑥 ∈ 𝐴 then 𝑥 ∈ 𝐵(𝑥, 𝑟) ∩ 𝐴. 

            If 𝑥 ∈ 𝐷(𝐴) then 𝐵(𝑥, 𝑟) ∩ 𝐴 ≠ ∅ for all 𝑟 > 0. 

 Hence in both cases 𝐵(𝑥, 𝑟) ∩ 𝐴 ≠ ∅ for all 𝑟 > 0. 

 Conversely, suppose 𝐵(𝑥, 𝑟) ∩ 𝐴 ≠ ∅ for all 𝑟 > 0. 

            We have to prove that 𝑥 ∈ 𝐴̅. 

              If 𝑥 ∈ 𝐴 trivially 𝑥 ∈ 𝐴̅. 

              Let 𝑥 ∉ 𝐴.  Then 𝐴 − {𝑥} = 𝐴. 

 ∴ 𝐵(𝑥, 𝑟) ∩ (𝐴 − {𝑥}) ≠ ∅. 

           ∴ 𝑥 ∈ 𝐷(𝐴). 

           ∴ 𝑥 ∈ 𝐴̅. 

Corollary 3 : 𝑥 ∈ 𝐴̅ ⇔ 𝐺 ∩ 𝐴 ≠ ∅ for every open set G containing 𝑥. 

Proof : Let 𝑥 ∈ 𝐴̅. 

 Let G be an open set containing 𝑥.  Then there exists 𝑟 > 0 such that 𝐵(𝑥, 𝑟) ⊆ 𝐺. 
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          Also, since 𝑥 ∈ 𝐴̅, 𝐵(𝑥, 𝑟) ∩ 𝐴 ≠ ∅. 

                   ∴ 𝐺 ∩ 𝐴 ≠ ∅. 

 Conversely, suppose 𝐺 ∩ 𝐴 ≠ ∅ for every open set G containing 𝑥. 

 Since 𝐵(𝑥, 𝑟) is an open set containing 𝑥, we have 𝐵(𝑥, 𝑟) ∩ 𝐴 ≠ ∅. 

          ∴ 𝑥 ∈ 𝐴̅. 

Example 1 : Consider R with ususal metric. 

(a) Let 𝐴 = [0,1). 

Then 𝐴̅ = 𝐴 ∪ 𝐷(𝐴). 

             = [0,1) ∪ [0,1] 

         = [0,1]. 

(b) Let 𝐴 = {1,
1

2
, …… . . ,

1

𝑛
, … . . } 

Then 𝐴̅ = 𝐴 ∪ 𝐷(𝐴). 

        ={1,
1

2
, …… . . ,

1

𝑛
, … . . } ∪ {0}. 

(c) 𝑍̅ = 𝑍 ∪ 𝐷(𝑍) 

   = 𝑍 ∪ ∅ = 𝑍. 

∴ Z is closed. 

(d) 𝑄̅ = 𝑄 ∪ 𝐷(𝑄) 

    = 𝑄 ∪ 𝑅 

   = 𝑅. 

  ∴ Q is not closed. 

Example 2 : In 𝑅 × 𝑅 with usual metric. 

                  𝑄 × 𝑄̅̅ ̅̅ ̅̅ ̅̅ = (𝑄 × 𝑄) ∪ 𝐷(𝑄 × 𝑄) 

       = (𝑄 × 𝑄) ∪ (𝑅 × 𝑅) 

       = 𝑅 × 𝑅. 

                    ∴ 𝑄 × 𝑄 is not closed. 

SOLVED PROBLEM 

Problem 1 : Prove that for any subset A of a metric space, 𝑑(𝐴) = 𝑑(𝐴̅) where 𝑑(𝐴) is the 

diameter of A. 

Solution : We have 𝐴 ⊆ 𝐴̅. 

  ∴ 𝑑(𝐴) ≤ 𝑑(𝐴̅).                                  ............................ (1) 

             Now, let 𝜀 > 0 be given.  We claim that 𝑑(𝐴̅) ≤ 𝑑(𝐴) + 𝜀. 



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   41 

 

              Let 𝑥, 𝑦 ∈ 𝐴̅. 

              ∴ 𝐵 (𝑥,
1

2
𝜀) ∩ 𝐴 ≠ ∅ and 𝐵 (𝑦,

1

2
𝜀) ∩ 𝐴 ≠ ∅     [By Corollary 2] 

 Let 𝑥1 ∈ 𝐵 (𝑥,
1

2
𝜀) ∩ 𝐴 and 𝑥2 ∈ 𝐵 (𝑦,

1

2
𝜀) ∩ 𝐴 

            ∴ 𝑥1 ∈ 𝐵 (𝑥,
1

2
𝜀) and 𝑥2 ∈ 𝐵 (𝑦,

1

2
𝜀). 

           ∴ 𝑑(𝑥, 𝑥1) <
𝜀

2
  and 𝑑(𝑦, 𝑥2) <

𝜀

2
                                ......................... (2) 

 Also, 𝑥1 ∈ 𝐴 and 𝑥2 ∈ 𝐴⇒𝑑(𝑥1, 𝑥2) ≤ 𝑑(𝐴)             .............................. (3)  

 Now, 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥1) + 𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2, 𝑦) 

                                   <
1

2
𝜀 + 𝑑(𝐴) +

1

2
𝜀       [𝑏𝑦 (2)& (3)] 

                                   = 𝑑(𝐴) + 𝜀. 

              Thus 𝑑(𝑥, 𝑦) ≤ 𝑑(𝐴) + 𝜀. 

                 ∴ 𝑙. 𝑢. 𝑏 {𝑑(𝑥, 𝑦)/𝑥, 𝑦 ∈ 𝐴̅} ≤ 𝑑(𝐴) + 𝜀. 

                i.e., 𝑑(𝐴̅) ≤ 𝑑(𝐴) + 𝜀. 

           Now, since 𝜀 is arbitrary, we have 𝑑(𝐴̅) ≤ 𝑑(𝐴)         ...................... (4) 

              By (1) and (4) we get 𝑑(𝐴) = 𝑑(𝐴̅). 

DENSE SETS 

Definition : A subset A of a metric space M is said to be dense in M or everywhere dense if 

𝐴̅ = 𝑀. 

Definition : A metric space M is said to be separable if there exists a countable dense subset 

in M. 

Example 1 : Let M be a metric space.  Trivially, M is dense in M. 

 Hence any countable metric space is separable. 

Example 2 : In R with usual metric Q is dense in R since 𝑄̅ = 𝑅. 

               Further Q is countable. 

              Hence R is separable. 

Example 3 : Let M be a discrete metric space. 

               Let 𝐴 ⊂ 𝑀 and since 𝐴 ≠ 𝑀. 

                Since A is closed, 𝐴̅ = 𝐴.    

 ∴ A is not dense. 

          Hence, any countable discrete metric space is not separable. 
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Example 4 : In 𝑅 × 𝑅 with usual metric 𝑄 × 𝑄 is a dense set since 𝑄 × 𝑄̅̅ ̅̅ ̅̅ ̅̅ = 𝑅 × 𝑅. 

               Also Q is countable and hence 𝑄 × 𝑄 is countable. 

             ∴ 𝑅 × 𝑅 is separable. 

Theorem 2.10 : Let M be a metric space and 𝐴 ⊆ 𝑀.  Then the following are equivalent. 

(i) A is dense in M. 

(ii) The only closed set which contains A is M. 

(iii) The only open set disjoint from A is ∅. 

(iv) A intersects every nonempty open set. 

(v) A intersects every open ball. 

Proof : (i)⇒(ii) 

 Suppose A is dense in M. 

 Then 𝐴̅ = 𝑀.      .................. (1) 

             Now, let 𝐹 ⊆ 𝑀 be any closed set containing A. 

                 Since, 𝐴̅ 𝑖𝑠 th smallest closed set containing A, we have 𝐴̅ ⊆ 𝐹. 

               Hence, 𝑀 ⊆ 𝐹. [by (1)] 

 Hence, 𝑀 = 𝐹. 

 ∴ The only closed set which contains A is M. 

        (ii)⇒(iii) 

 Suppose (iii) is not true. 

 Then there exists a non-empty open set B such that 𝐵 ∩ 𝐴 = ∅. 

                ∴ 𝐵𝑐 is a closed set and 𝐵𝑐 ⊇ 𝐴. 

            Further, since 𝐵 ≠ ∅ we have 𝐵𝑐 ≠ 𝑀 which is a contradiction to (ii). 

 Hence,        (ii)⇒(iii) 

        (iii)⇒(iv) is obvious. 

        (iv)⇒(v), since every open ball is an open set we get the result. 

        (v)⇒(i) 

 Let 𝑥 ∈ 𝑀. 

                 Suppose every open ball 𝐵(𝑥, 𝑟) intersects A. 

 Then by Corollary 2 of Theorem 2.9, 𝑥 ∈ 𝐴̅. 

               ∴ 𝑀 ⊆ 𝐴̅. 

 But trivially 𝐴̅ ⊆ 𝑀. 

 ∴ 𝐴̅ = 𝑀.               Hence, A is dense in M. 
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SOLVED PROBLEM  

Problem 1 : Give an example of a set E such that both E and 𝐸𝑐 are dense in R. 

Solution : Let 𝐸 = 𝑄. 

 Since any open ball 𝐵(𝑥, 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) contains both rational and irrational 

numbers Q and 𝑄𝑐. 

                  Hence Q and 𝑄𝑐 are dense in R. 

COMPLETE METRIC SPACE 

Definition : Let (M,d) be a metric space.  Let (𝑥𝑛) = 𝑥1, 𝑥2, …… . , 𝑥𝑛, …….  be a sequence of 

points in M.  Let 𝑥 ∈ 𝑀.  We say that (𝑥𝑛) converges to x if given 𝜀 > 0 there exists a positive 

integer 𝑛0 such that 𝑑(𝑥𝑛 , 𝑥) < 𝜀 for all 𝑛 ≥ 𝑛0.  Also x is called a limit of (𝑥𝑛). 

 If (𝑥𝑛) converges to x we write lim
𝑛→∞

𝑥𝑛 = 𝑥 𝑜𝑟 (𝑥𝑛) → 𝑥. 

Note 1 :(𝑥𝑛) → 𝑥 iff for each open ball 𝐵(𝑥, 𝜀) with centre x there exists a positive integer 𝑛0 

such that 𝑥𝑛 ∈ 𝐵(𝑥, 𝜀) for all 𝑛 ≥ 𝑛0. 

 Thus the open ball 𝐵(𝑥, 𝜀) contains all but a finite number of terms of the sequence. 

Note 2 :(𝑥𝑛) → 𝑥 iff the sequence of real numbers (𝑑(𝑥𝑛, 𝑥)) → 0. 

Theorem 2.11 : For a convergent sequence (𝑥𝑛) the limit is unique. 

Proof : Suppose (𝑥𝑛) → 𝑥 and (𝑦𝑛) → 𝑦. 

 Let 𝜀 > 0 be given. 

 Since, (𝑥𝑛) → 𝑥, there exists positive integer𝑛1 such that 𝑑(𝑥𝑛 , 𝑥) <
𝜀

2
 for all 𝑛 ≥ 𝑛1. 

Also, since (𝑦𝑛) → 𝑦, there exists positive integer 𝑛2 such that 𝑑(𝑦𝑛 , 𝑦) <
𝜀

2
 for all 𝑛 ≥ 𝑛2. 

 Let m be a positive integer such that 𝑚 ≥ 𝑛1, 𝑛2. 

 Then 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥𝑚) + 𝑑(𝑥𝑚 , 𝑦) 

   <
𝜀

2
+

𝜀

2
= 𝜀. 

 ∴ 𝑑(𝑥, 𝑦) < 𝜀. 

 Since 𝜀 > 0 is arbitrary, 𝑑(𝑥, 𝑦) = 0. 

 ∴ 𝑥 = 𝑦. 

Note : In view of the above theorem if (𝑥𝑛) → 𝑥, then x is called of the limit of the sequence 

(𝑥𝑛). 
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Theorem 2.12: Let M be a metric space and 𝐴 ⊆ 𝑀.  Then 

(i) 𝑥 ∈ 𝐴⃐iff there exists a sequence (𝑥𝑛) in A such that (𝑥𝑛) → 𝑥. 

(ii) x is a limit point of A iff there exists a sequence (𝑥𝑛) of distinct points in A 

such that (𝑥𝑛) → 𝑥. 

 

Proof : Let 𝑥 ∈ 𝐴⃐.  Then 𝑥 ∈ 𝐴 ∪ 𝐷(𝐴). 

 ∴ 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐷(𝐴). 

 If 𝑥 ∈ 𝐴, then the sequence 𝑥, 𝑥, 𝑥, … .. is a sequence in A converging to x. 

 If 𝑥 ∈ 𝐷(𝐴) then the open ball 𝐵 (𝑥,
1

𝑛
) contains infinite number of points of A. 

 ∴ We can choose 𝑥𝑛 ∈ 𝐵 (𝑥,
1

𝑛
) ∩ 𝐴 such that 𝑥𝑛 ≠ 𝑥1, 𝑥2, …… . , 𝑥𝑛−1 for each n. 

 ∴ (𝑥𝑛) is a sequence of distinct points in A. 

 Also, 𝑑(𝑥𝑛 , 𝑥) <
1

𝑛
 for all n. 

 ∴ lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑥) = 0. 

 ∴ (𝑥𝑛) → 𝑥. 

 Conversely, suppose there exists a sequence (𝑥𝑛)in A such that (𝑥𝑛) → 𝑥. 

Then for any 𝑟 > 0 there exists a positive integer 𝑛0 such that 𝑑(𝑥𝑛 , 𝑥) < 𝑟 for all 𝑛 ≥ 𝑛0.   

 ∴ 𝑥𝑛 ∈ 𝐵(𝑥, 𝑟)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

 ∴ 𝐵(𝑥, 𝑟) ∩ 𝐴 ≠ ∅. 

 Hence, 𝑥 ∈ 𝐴̅. 

 Further, if (𝑥𝑛) is a sequence of distinct points, 𝐵(𝑥, 𝑟) ∩ 𝐴 is infinite. 

 ∴ 𝑥 ∈ 𝐷(𝐴). 

 Hence, x is a limit point of A. 

Definition : Let (M,d) be a metric space.  Let (𝑥𝑛) be a sequence of points in M.  (𝑥𝑛) is said 

to be a Cauchy sequence in M if given 𝜀 > 0 there exists a positive integer 𝑛0 such that 

𝑑(𝑥𝑚 , 𝑥𝑛) < 𝜀 for all 𝑚,𝑛 ≥ 𝑛0. 

Theorem 2.13 : Let (M,d) be a metric space.  Then any convergent sequence in M is a Cauchy 

sequence. 

Proof : Let (𝑥𝑛) be a convergent sequence in M converging to 𝑥 ∈ 𝑀. 

 Let 𝜀 > 0 be given. 

 Then there exists a positive integer 𝑛0 such that 𝑑(𝑥𝑛, 𝑥) <
𝜀

2
 for all 𝑛 ≥ 𝑛0. 

 ∴ 𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥) + 𝑑(𝑥, 𝑥𝑛) 



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   45 

 

  <
𝜀

2
+

𝜀

2
 for all 𝑚, 𝑛 ≥ 𝑛0. 

  = 𝜀 for all 𝑚, 𝑛 ≥ 𝑛0. 

 Thus, 𝑑(𝑥𝑚 , 𝑥𝑛) < 𝜀 for all 𝑚,𝑛 ≥ 𝑛0. 

 ∴ (𝑥𝑛) is a Cauchy sequence. 

Note : The converse of the above theorem is not true.  i.e., any Cauchy sequence need not be a 

convergence sequence. 

 For example, consider the metric space (0,1] with usual metric. 

 (
1

𝑛
) is a Cauchy sequence in (0,1]. 

 But this sequence does not converge to any point in (0,1]. 

Definition : A metric space M is said to be complete if every Cauchy sequence in M converges 

to a point in M. 

Example 1: R with usual metric is complete.  This is a fundamental fact to elementary analysis. 

Note : The metric space (0,1] with usual metric is not complete. 

Example 2 : C with usual metric is complete. 

Proof : Let (𝑧𝑛) be a Cauchy sequence in C. 

 Let 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛 where 𝑥𝑛 , 𝑦𝑛 ∈ 𝑅. 

 We claim that (𝑥𝑛)& (𝑦𝑛) are Cauchy sequences in R. 

 Let 𝜀 > 0 be given. 

 Since (𝑧𝑛) is a Cauchy sequence, there exists a positive integer 𝑛0such that |𝑧𝑛 − 𝑧𝑚| <

𝜀 for all 𝑛,𝑚 ≥ 𝑛0. 

 Now, |𝑥𝑛 − 𝑥𝑚| ≤ |𝑧𝑛 − 𝑧𝑚| and |𝑦𝑛 − 𝑦𝑚| ≤ |𝑧𝑛 − 𝑧𝑚| 

Hence, |𝑥𝑛 − 𝑥𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0 and  |𝑦𝑛 − 𝑦𝑚| < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0. 

 ∴ (𝑥𝑛) and (𝑦𝑛) are Cauchy sequences in R. 

 Since R is complete, there exists 𝑥, 𝑦 ∈ 𝑅 such that (𝑥𝑛) → 𝑥 and (𝑦𝑛) → 𝑦. 

 Let 𝑧 = 𝑥 + 𝑖𝑦. 

 We claim that (𝑧𝑛) → 𝑧. 

 We have |𝑧𝑛 − 𝑧| = |(𝑥𝑛 + 𝑖𝑦𝑛) − (𝑥 + 𝑖𝑦)| 

   = |(𝑥𝑛 − 𝑥) + 𝑖(𝑦𝑛 − 𝑦)| 

   ≤ |𝑥𝑛 − 𝑥| + |𝑦𝑛 − 𝑦|   …………..(1) 
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 Now, let 𝜀 > 0 be given. 

 Since, (𝑥𝑛) → 𝑥 and (𝑦𝑛) → 𝑦 there exists a positive integer 𝑛1 and 𝑛2 such that 

|𝑥𝑛 − 𝑥| <
𝜀

2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛1 𝑎𝑛𝑑 |𝑦𝑛 − 𝑦| <

𝜀

2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛2. 

 Let 𝑛3 = max{𝑛1, 𝑛2}. 

 From (1) we get |𝑧𝑛 − 𝑧| <
𝜀

2
+

𝜀

2
 for all 𝑛 ≥ 𝑛3. 

 ∴ (𝑧𝑛) → 𝑧. 

 ∴ 𝑧 is complete. 

Example 3 : Any discrete metric space is complete. 

Proof : Let (M,d) be a discrete metric space. 

 Let (𝑥𝑛) be a Cauchy sequence in M. 

 Then there exists a positive integer 𝑛0 such that 𝑑(𝑥𝑛, 𝑥𝑚) <
1

2
 for all 𝑛,𝑚 ≥ 𝑛0. 

 Since d is the discrete metric, distance between any two points is either 0 or 1. 

 ∴  𝑑(𝑥𝑛 , 𝑥𝑚) = 0 for all 𝑛,𝑚 ≥ 𝑛0. 

 ∴ 𝑥𝑛 = 𝑥𝑛0 = 𝑥 (𝑠𝑎𝑦) for all 𝑛 ≥ 𝑛0. 

 ∴ 𝑑(𝑥𝑛 , 𝑥) = 0 for all 𝑛 ≥ 𝑛0. 

 ∴ (𝑥𝑛) → 𝑥. 

 Hence M is complete. 

Example 4 :𝑅𝑛 with usual metric is complete. 

Proof : Let (𝑥𝑝) be a Cauchy sequence in 𝑅𝑛 . 

 Let (𝑥𝑝) = (𝑥𝑝1, 𝑥𝑝2 , ……………𝑥𝑝𝑛).  

 Let 𝜀 > 0 be given. 

Then there exists a positive integer 𝑛0 such that 𝑑(𝑥𝑝, 𝑥𝑞) < 𝜀 for all 𝑝, 𝑞 ≥ 𝑛0. 

∴ [∑ (𝑥𝑝𝑘 − 𝑥𝑞𝑘)
2𝑛

𝑘=1 ]
1/2

< 𝜀 for all 𝑝, 𝑞 ≥ 𝑛0. 

∴ ∑ (𝑥𝑝𝑘 − 𝑥𝑞𝑘)
2𝑛

𝑘=1 < 𝜀2for all 𝑝, 𝑞 ≥ 𝑛0. 

∴ For each k=1,2, ….., n we have |𝑥𝑝𝑘 − 𝑥𝑞𝑘| < 𝜀 for all 𝑝, 𝑞 ≥ 𝑛0. 

∴ (𝑥𝑝𝑘)is a Cauchy sequences in R for each k=1,2,……..,n. 
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 Since R is complete, there exists 𝑦𝑘 ∈ 𝑅 such that (𝑥𝑝𝑘) → 𝑦𝑘 . 

Let 𝑦 = (𝑦1, 𝑦2, ……………𝑦𝑛).  

We claim that (𝑥𝑝) → 𝑦. 

Since (𝑥𝑝𝑘) → 𝑦𝑘  there exists a positive integer 𝑚𝑘 such that |𝑥𝑝𝑘 − 𝑦𝑘| <
𝜀

√𝑛
 for all 

𝑝 ≥ 𝑚𝑘. 

Let 𝑚0 = max{𝑚1,𝑚2, …… .𝑚𝑛}. 

Then 𝑑(𝑥𝑝, 𝑦) = [∑ (𝑥𝑝𝑘 − 𝑦𝑘)
2𝑛

𝑘=1 ]
1/2

 

  < [𝑛 (
𝜀

√𝑛
)
2

]
1/2

 for all 𝑝 ≥ 𝑚0. 

  = 𝜀 for all 𝑝 ≥ 𝑚0. 

∴ 𝑑(𝑥𝑝, 𝑦) < 𝜀for all 𝑝 ≥ 𝑚0. 

∴ (𝑥𝑝) → 𝑦. 

Hence, 𝑅𝑛 is complete. 

Example 5 :𝑙2 is complete. 

Proof :Let (𝑥𝑝) be a Cauchy sequence in 𝑙2. 

 Let (𝑥𝑝) = (𝑥𝑝1, 𝑥𝑝2 , ……………𝑥𝑝𝑛).  

 Let 𝜀 > 0 be given. 

Then there exists a positive integer 𝑛0 such that 𝑑(𝑥𝑝, 𝑥𝑞) < 𝜀 for all 𝑝, 𝑞 ≥ 𝑛0. 

∴ [∑ (𝑥𝑝𝑛 − 𝑥𝑞𝑛)
2∞

𝑛=1 ]
1/2

< 𝜀 for all 𝑝, 𝑞 ≥ 𝑛0. 

∴ ∑ (𝑥𝑝𝑛 − 𝑥𝑞𝑛)
2∞

𝑛=1 < 𝜀2for all 𝑝, 𝑞 ≥ 𝑛0.  ………..(1) 

∴ For each n=1,2, ….., …. we have |𝑥𝑝𝑛 − 𝑥𝑞𝑛| < 𝜀 for all 𝑝, 𝑞 ≥ 𝑛0. 

∴ (𝑥𝑝𝑛) is a Cauchy sequences in R for each n. 
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 Since R is complete, there exists 𝑦𝑘 ∈ 𝑅 such that (𝑥𝑝𝑛) → 𝑦𝑛 . ……..(2) 

Let 𝑦 = (𝑦1, 𝑦2, ……………𝑦𝑛 ,…… . ).  

We claim that 𝑦 ∈ 𝑙2 𝑎𝑛𝑑 (𝑥𝑝) → 𝑦. 

For any fixed positive integer m, we have ∑ (𝑥𝑝𝑛 − 𝑥𝑞𝑛)
2𝑚

𝑛=1 < 𝜀2for all 𝑝, 𝑞 ≥ 𝑛0. 

        [using (1)] 

Fixing q and allowing 𝑝 → ∞ in this finite sum we get  

∑ (𝑦𝑛 − 𝑥𝑞𝑛)
2𝑚

𝑛=1 < 𝜀2for all 𝑞 ≥ 𝑛0. 

Since this is true for every positive integer  m∑ (𝑦𝑛 − 𝑥𝑞𝑛)
2∞

𝑛=1 < 𝜀2for all 𝑞 ≥ 𝑛0. 

        ……………. (3) 

Now, [∑ |𝑦𝑛|
2∞

𝑛=1 ]
1

2 = [∑ |𝑦𝑛 − 𝑥𝑞𝑛 + 𝑥𝑞𝑛|
2∞

𝑛=1 ]

1

2
 

  =[∑ |𝑦𝑛 − 𝑥𝑞𝑛|
2∞

𝑛=1 ]

1

2
+ [∑ |𝑥𝑞𝑛|

2∞
𝑛=1 ]

1

2
 [By Minkowski’s inequality] 

  ≤ 𝜀 + [∑ |𝑥𝑞𝑛|
2∞

𝑛=1 ]

1

2
 for all 𝑞 ≥ 𝑛0   (by (3) 

Since 𝑥𝑞 ∈ 𝑙2 we have [∑ |𝑥𝑞𝑛|
2∞

𝑛=1 ]

1

2
 converges. 

∴ [∑ |𝑦𝑛|
2∞

𝑛=1 ]
1

2converges. 

∴ 𝑦 ∈ 𝑙2. 

Also (3) gives 𝑑(𝑦, 𝑥𝑞) ≤ 𝜀 for all 𝑞 ≥ 𝑛0. 

∴ (𝑥𝑝) → 𝑦. 

∴  𝑙2 is complete. 

Note : A subspace of a complete metric space need not be complete. 

 For example, R with usual metric is complete.  But the subspace (0,1] is not complete. 
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Theorem 2.14 : A subset A of a complete metric space M is complete iff A is closed. 

Proof : Suppose A is complete. 

 To prove A is closed. 

 We shall prove that A contains all its limit points. 

 Let x be a limit point of A. 

 Then by theorem, there exists a sequence (𝑥𝑛)in A such that (𝑥𝑛) → 𝑥. 

 Since A is complete, 𝑥 ∈ 𝐴. 

 ∴ 𝐴 contains all its limit points. 

 Hence A is closed. 

Conversely, let A be a closed subset of M. 

 To prove A is complete. 

 Let (𝑥𝑛) be a Cauchy sequence in A. 

 Then (𝑥𝑛) is a Cauchy sequence in M also and since M is complete there exists 𝑥 ∈ 𝑀 

such that (𝑥𝑛) → 𝑥. 

 Thus (𝑥𝑛) is a sequence in A converging to x. 

 ∴ 𝑥 ∈ 𝐴̅ (by theorem) 

 Now, since A is closed, 𝐴 = 𝐴̅. 

 ∴ 𝑥 ∈ 𝐴. 

 Thus every Cauchy sequence (𝑥𝑛) in A converges to a point in A. 

 Hence A is complete. 

Note 1 : [0,1] with usual metric is complete since it is a closed subset of the complete metric 

space R. 

Note 2 : Consider Q.  Since 𝑄̅ = 𝑅, Q is not a closed subset of R. 
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  Hence Q is not complete. 

Solved problems 

Problem 1 : Let A, B be subsets of R.  Prove that 𝐴 × 𝐵̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̅ × 𝐵̅. 

Solution : Let (𝑥, 𝑦) ∈ 𝐴 × 𝐵̅̅ ̅̅ ̅̅ ̅̅  

 ∴ There exists a sequence ((𝑥𝑛, 𝑦𝑛)) ∈ 𝐴 × 𝐵 such that ((𝑥𝑛 , 𝑦𝑛)) → (𝑥, 𝑦). 

 ∴ (𝑥𝑛) → 𝑥 and (𝑦𝑛) → 𝑦. 

 Also (𝑥𝑛) is a sequence in A and (𝑦𝑛) is a sequence in B. 

 ∴ 𝑥 ∈ 𝐴̅ and 𝑦 ∈ 𝐵̅. 

 ∴ (𝑥, 𝑦) ∈ 𝐴̅ × 𝐵̅. 

∴ 𝐴 × 𝐵̅̅ ̅̅ ̅̅ ̅̅ ⊆ 𝐴̅ × 𝐵̅.     ……………(1) 

Now, let (𝑥, 𝑦) ∈ 𝐴̅ × 𝐵̅. 

 ∴ 𝑥 ∈ 𝐴̅ and 𝑦 ∈ 𝐵̅. 

∴ There exists a sequence (𝑥𝑛) in A and a sequence (𝑦𝑛) in B such that (𝑥𝑛) → 𝑥 and  

(𝑦𝑛) → 𝑦. 

 ∴ ((𝑥𝑛, 𝑦𝑛))𝑖𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝐴 × 𝐵 such that ((𝑥𝑛, 𝑦𝑛)) → (𝑥, 𝑦). 

 Hence (𝑥, 𝑦) ∈ 𝐴 × 𝐵̅̅ ̅̅ ̅̅ ̅̅  

 ∴ 𝐴̅ × 𝐵̅ ⊆ 𝐴 × 𝐵̅̅ ̅̅ ̅̅ ̅̅ .     ……………(2) 

From (1) & (2) 𝐴 × 𝐵̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̅ × 𝐵̅. 

Problem 2 :If A and B are closed subsets of R.  Prove that 𝐴 × 𝐵 is a closed subset of 𝑅 × 𝑅. 

Solution : Since A and B are closed sets we have 𝐴 = 𝐴̅ and 𝐵 = 𝐵̅. 

 Now, 𝐴 × 𝐵̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̅ × 𝐵̅ [𝐵𝑦 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 1] 

          =𝐴 × 𝐵. 

 ∴ 𝐴 × 𝐵 is a closed set. 

 

Theorem 2.15 (Cantor’s Intersection Theorem) 

Statement : Let (M,d) be a metric space.  M is complete iff for every sequence (𝐹𝑛) of non-

empty closed subsets of M such that 𝐹1 ⊇ 𝐹2 ⊇ ⋯……… .⊇ 𝐹𝑛 ⊇ ⋯… and (𝑑(𝐹𝑛)) → 0, then 

⋂ 𝐹𝑛
∞
𝑛=1  is nonempty. 
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Proof :Let (M,d) be a complete metric space. 

 Let (𝐹𝑛)be a sequence of non-empty closed subsets of M such that  

𝐹1 ⊇ 𝐹2 ⊇ ⋯……… .⊇ 𝐹𝑛 ⊇ ⋯…  ………. (1)  

and (𝑑(𝐹𝑛)) → 0    ………. (2) 

We claim that ⋂ 𝐹𝑛
∞
𝑛=1 ≠ ∅. 

For each positive integer n, choose a point 𝑥𝑛 ∈ 𝐹𝑛 . 

By (1), 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+2  ……………all lie in 𝐹𝑛 . 

i.e., 𝑥𝑚 ∈ 𝐹𝑛 for all 𝑚 ≥ 𝑛.     ………….. (3) 

Since, (𝑑(𝐹𝑛)) → 0, given 𝜀 > 0, there exists a positive integer 𝑛0, such that 

𝑑(𝐹𝑛) < 𝜀 for all 𝑛 ≥ 𝑛0. 

In particular 𝑑(𝐹𝑛0) < 𝜀.   …………… (4) 

 ∴ 𝑑(𝑥, 𝑦) < 𝜀 for all 𝑥, 𝑦 ∈ 𝐹𝑛 . 

 Now, 𝑥𝑚 ∈ 𝐹𝑛0 for all 𝑚 ≥ 𝑛0.  [𝑏𝑦 (3)] 

 ∴ 𝑚, 𝑛 ≥ 𝑛0 ⇒ 𝑥𝑚 , 𝑥𝑛 ∈ 𝐹𝑛0 . 

   ⇒ 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀 [By (4)] 

∴ (𝑥𝑛) is a Cauchy sequence in M. 

Since M is complete there exists a point 𝑥 ∈ 𝑀 such that (𝑥𝑛) → 𝑥. 

We claim that 𝑥 ∈ ⋂ 𝐹𝑛 .
∞
𝑛=1  

Now, for any positive integer n, 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+2  …………… is a sequence in 

𝐹𝑛and this sequence converges to x. 

∴ 𝑥 ∈ 𝐹𝑛̅ . 

But 𝐹𝑛̅ is closed and hence 𝐹𝑛̅ = 𝐹𝑛 . 

∴ 𝑥 ∈ 𝐹𝑛 . 
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∴ 𝑥 ∈⋂𝐹𝑛 .

∞

𝑛=1

 

Hence, ⋂ 𝐹𝑛 ≠ ∅.∞
𝑛=1  

Conversely, assume that for every sequence (𝐹𝑛) of non-empty closed subsets of M 

such that 𝐹1 ⊇ 𝐹2 ⊇ ⋯……… .⊇ 𝐹𝑛 ⊇ ⋯… and (𝑑(𝐹𝑛)) → 0, then ⋂ 𝐹𝑛
∞
𝑛=1  is nonempty. 

To prove M is complete. 

Let (𝑥𝑛) be a Cauchy sequence in M. 

Let 𝐹1 = {𝑥1, 𝑥2, 𝑥3, ……… . , 𝑥𝑛, … . . } 

 𝐹2 = {𝑥2, 𝑥3, ……… . , 𝑥𝑛, … . . } 

 ………………………………… 

 ………………………………… 

 𝐹𝑛 = {𝑥𝑛 , 𝑥𝑛+1, …………… . . } 

 ………………………………. 

Clearly, 𝐹1 ⊇ 𝐹2 ⊇ ⋯……… .⊇ 𝐹𝑛 ⊇ ⋯… 

∴ 𝐹1̅ ⊇ 𝐹2̅̅̅ ⊇ ⋯……… .⊇ 𝐹𝑛̅ ⊇ ⋯… 

 ∴ (𝐹𝑛̅) is a decreasing sequence of closed sets. 

 Now, since (𝑥𝑛) is a Cauchy sequence, given 𝜀 > 0 there exists a positive integer 𝑛0, 

such that 𝑑(𝑥𝑛 , 𝑥𝑚) < 𝜀 for all 𝑛,𝑚 ≥ 𝑛0. 

 ∴For any integer 𝑛 ≥ 𝑛0, the distance between any two points of 𝐹𝑛 is less than 𝜀. 

∴ 𝑑(𝐹𝑛) < 𝜀 for all 𝑛 ≥ 𝑛0. 

But 𝑑(𝐹𝑛) = 𝑑(𝐹𝑛̅). 

∴ 𝑑(𝐹𝑛̅) < 𝜀 for all 𝑛 ≥ 𝑛0.    ……………… (5) 

∴ 𝑑(𝐹𝑛̅) → 0. 
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Hence, ⋂ 𝐹𝑛̅ ≠ ∅.∞
𝑛=1  

Let 𝑥 ∈ ⋂ 𝐹𝑛̅ .
∞
𝑛=1  

Then  𝑥 and 𝑥𝑛 ∈ 𝐹𝑛̅ . 

∴ 𝑑(𝑥𝑛, 𝑥) ≤ 𝐹𝑛̅ . 

      < 𝜀 for all 𝑛 ≥ 𝑛0. [From (5)] 

∴ (𝑥𝑛) → 𝑥. 

∴ M is complete. 

Note 1 : In the above theorem ⋂ 𝐹𝑛
∞
𝑛=1  contains exactly one point. 

 For, suppose ⋂ 𝐹𝑛
∞
𝑛=1  contains two distinct points x and y. 

 Then 𝑑(𝐹𝑛) ≥ 𝑑(𝑥, 𝑦) for all n. 

 ∴ 𝑑(𝐹𝑛) does not tend to zero which is a contradiction. 

 ∴ ⋂ 𝐹𝑛
∞
𝑛=1  contains exactly one point. 

Note 2 :In the above theorem ⋂ 𝐹𝑛
∞
𝑛=1  may be empty if each 𝐹𝑛 is not closed. 

 For example, consider 𝐹𝑛 = (0,
1

𝑛
)   𝑖𝑛 𝑅. 

 Clearly, 𝐹1 ⊇ 𝐹2 ⊇ ⋯……… .⊇ 𝐹𝑛 ⊇ ⋯… and (𝑑(𝐹𝑛)) → 0 as 𝑛 → ∞. 

 But, ⋂ 𝐹𝑛
∞
𝑛=1 = ∅. 

Note 3 : In the above theorem ⋂ 𝐹𝑛
∞
𝑛=1  may be empty if the hypothesis (𝑑(𝐹𝑛)) → 0 is omitted. 

 For example, consider 𝐹𝑛 = [𝑛,∞) in R. 

 Clearly (𝐹𝑛) is a sequence of closed sets and 𝐹1 ⊇ 𝐹2 ⊇ ⋯……… .⊇ 𝐹𝑛 ⊇ ⋯… 

 Also, ⋂ 𝐹𝑛
∞
𝑛=1 = ∅. 

 Here, 𝑑(𝐹𝑛) = ∞ for all n and hence the hypothesis (𝑑(𝐹𝑛)) → 0 is not true. 
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BAIRE’S CATEGORY THEOREM 

Definition : A subset A of a metric space M is said to be nowhere dense in M if 𝐼𝑛𝑡𝐴̅ = ∅. 

Definition : A subset A of a metric space M is said to be of first category in M if A can be 

expressed as a countable union of nowhere dense sets. 

 A set which is not of first category is said to be of second category. 

Note : If A is of first category then 𝐴 = ⋃ 𝐸𝑛
∞
𝑛=1 where 𝐸𝑛is nowhere dense subsets in M. 

Example 1 : In R with usual metric 𝐴 = {1,
1

2
,
1

3
, ……… ,

1

𝑛
, ……… . . } is nowhere dense. 

 For, 𝐴̅ = 𝐴 ∪ 𝐷(𝐴) = {0,1,
1

2
,
1

3
, ……… . ,

1

𝑛
, ……… . . } 

 Clearly 𝐼𝑛𝑡𝐴̅ = ∅. 

Example 2 : In any discrete metric space M, any non-empty subset A is not nowhere dense. 

 For, in a discrete metric space every subset is both open and closed. 

 ∴ 𝐴̅ = 𝐼𝑛𝑡𝐴̅ = 𝐼𝑛𝑡𝐴 = 𝐴. 

 ∴ 𝐼𝑛𝑡𝐴̅ ≠ ∅. 

 ∴ A is not nowhere dense. 

Example 3 : In R with usual metric any finite subset A is nowhere dense. 

 For, let A be any finite subset of R. 

 Then A is closed and hence 𝐴 = 𝐴̅. 

 Also since A is finite, no point of A is an interior point of A/ 

 ∴ 𝐼𝑛𝑡𝐴̅ = 𝐼𝑛𝑡𝐴 = ∅. 

 ∴ A is nowhere dense. 

Example 4 : Consider R with usual metric.  Any singleton set {x} is nowhere dense. 

 ∴ Any countable subset of R being a countable union of singleton sets is of first 

category. 
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 In particular Q is of first category. 

Note : If A and B are sets of first category in a metric space M then 𝐴 ∪ 𝐵 is also of first 

category. 

 For, since A and B are of first category in M we have 𝐴 = ⋃ 𝐸𝑛
∞
𝑛=1 and𝐵 =

⋃ 𝐻𝑛
∞
𝑛=1 where 𝐸𝑛 and 𝐻𝑛 are nowhere dense subsets in M. 

 ∴ 𝐴 ∪ 𝐵 is a countable union of nowhere dense subsets of M. 

 Hence 𝐴 ∪ 𝐵 is of first category. 

Theorem 2.16 (Equivalent characterisations of nowhere dense sets 

Let M be a metric space and 𝐴 ⊆ 𝑀.  Then the following are equivalent. 

(i) A is nowhere dense in M. 

(ii) 𝐴̅ dos not contain any non-empty open set. 

(iii) Each non-empty open set has a non-empty open subset disjoint from 𝐴̅. 

(iv) Each non-empty open set has a non-empty open subset disjoint from A. 

(v) Each non-empty open set contains an open sphere disjoint from A. 

Theorem 2.17 (Baire’s Category Theorem) 

Statement : Any complete metric space is of second category. 

Proof : Let M be a complete metric space. 

 To prove M is of second category. 

 i.e. to prove M is not of first category. 

 Let (𝐴𝑛) be a sequence of nowhere dense sets in M. 

 We claim that ⋃ 𝐴𝑛 ≠ 𝑀.∞
𝑛=1  

 Since, M is open and 𝐴1 is nowhere dense, there exists an open ball 𝐵1 of radius less 

than 1 such that 𝐵1 is disjoint from 𝐴1. 

 Let 𝐹1 denote the concentric closed ball whose radius is 
1

2
 times that of 𝐵1. 

             Now 𝐼𝑛𝑡 𝐹1 is open and 𝐴2 is nowhere dense. 
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∴ 𝐼𝑛𝑡𝐹1 contains an open ball 𝐵2 of radius less than 
1

2
 such that 𝐵2 is disjoint from 𝐴2. 

 Let 𝐹2 denote the concentric closed ball whose radius is 
1

2
 times that of 𝐵2. 

Now 𝐼𝑛𝑡 𝐹2 is open and 𝐴3 is nowhere dense. 

∴ 𝐼𝑛𝑡𝐹2 contains an open ball 𝐵3 of radius less than 
1

4
 such that 𝐵3 is disjoint from 𝐴3. 

 Let 𝐹3 denote the concentric closed ball whose radius is 
1

2
 times that of 𝐵3. 

       Proceding like this we get a sequence of non-empty closed balls 𝐹𝑛 such that 𝐹1 ⊇

𝐹2 ⊇ ⋯……… .⊇ 𝐹𝑛 ⊇ ⋯… and 𝑑(𝐹𝑛) <
1

2𝑛
. 

           Hence (𝑑(𝐹𝑛)) → 0 as 𝑛 → ∞. 

               Since, M is complete, by Cantor’s Intersection theorem, there exists a point x in M 

such that 𝑥 ∈ ⋂ 𝐹𝑛
∞
𝑛=1 . 

           Also, each 𝐹𝑛 is disjoint from 𝐴𝑛 . 

          Hence, x∉ 𝐴𝑛 for all n. 

         ∴ 𝑥 ∉ ⋃ 𝐴𝑛 .
∞
𝑛=1  

         ∴ ⋃ 𝐴𝑛 ≠ 𝑀.∞
𝑛=1  

 Hence M is of second category. 

Corollary : R is of second category. 

Proof : We know that R is a complete metric space.  Hence R is of second category. 

Note : The converse of the above theorem is not true.   

 i.e., A metric space which is of second category need not be complete. 

  For example, Consider M=R-Q, the space of irrational numbers. 

  We know that Q is of first category. 

  Suppose M is of first category.  Then MUQ=R is also of first category which is 

a contradiction. 
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 Hence, M is of second category. 

 Also M is not a closed subspace of R and hence M is not complete. 

Exercises 

I. Determine which of the following statements are true and which are false. 

1. In R with discrete metric Z is a bounded set. 

2. In R with usual metric Z is a bounded set. 

3. In a discrete metric space every subset is bounded. 

4. A subset of a metric space is bounded iff its diameter is finite. 

5. A non-empty subset of a metric space is bounded iff its diameter is finite. 

6. Any open ball is a non-empty set. 

7. Any open ball is a bounded set. 

8. In a discrete metric space M any open ball is either a singleton set or the whole space. 

9. In R with usual metric [0,1) is neither open nor closed. 

10. A set is closed iff its complement is open. 

II. Prove that any nonempty open interval (a,b) in R is of second category. 

III. Prove that a closed set A in a metric space M is nowhere dense iff 𝐴𝑐 is everywhere 

dense. 

IV. Prove that union of a countable number of sets which are of first category is again 

of first category. 
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UNIT III 

CONTINUITY 

Definition: 

Let (M1,d1) and (M2,d2) be two metric spaces.  Let 𝑓:𝑀1 → 𝑀2 be a function.  Let  

a∈ M1 and 𝑙 ∈ M2.  The function f is said to have the limit 𝑙 as x→a if given 𝜀 > 0 there exists  

𝛿 > 0 such that 0<d1(x,a)<𝛿 ⇒ d2(f(x), 𝑙)< 𝜀.  We write lim
 x→a

𝑓(𝑥)= 𝑙. 

Let (M1,d1) and (M2,d2) be the two metric spaces. Let a∈ M1.   A function f:M1→M2 

is said to be continuous at a if given 𝜀 > 0 there exists 𝛿 > 0 such that d1(x,a)<𝛿 ⇒ 

d2(f(x),f(a))< 𝜀.  f is said to be continuous if it is continuous at every point of M. 

Note: 

 1. f is continuous at a iff  lim
 x→a

𝑓(𝑥) =f(a). 

2. The condition d1(x,a)<𝛿 ⇒ d2(f(x),f(a))< 𝜀 can be rewritten as  

i. 𝑥 ∈ 𝐵(𝑎, 𝛿) ⇒ 𝑓(𝑥) ∈  𝐵(𝑓(𝑎), 𝜀) 𝑜𝑟 

ii. 𝑓(𝐵(𝑎, 𝛿))  ⊆ 𝐵(𝑓(𝑎), 𝜀) 

Examples: 

1.  Let f:M1→M2 be given by f(x)=a where a∈ M2 is a fixed element. 

Proof: 

  Let x∈M1 and 𝜀 > 0 be given  

Then for any 𝛿 > 0, 𝑓(𝐵(𝑥, 𝛿))  = {𝑎} ⊆ 𝐵(𝑎, 𝜀) = 𝐵(𝑓(𝑥), 𝜀) 

∴  𝑓(𝐵(𝑥, 𝛿)) ⊆ 𝐵(𝑓(𝑥), 𝜀) 

Since x∈M1 is arbitrary, f is continuous. 
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 2.  Let (M1,d1) be a discrete metric and (𝑀2, 𝑑2)be any metric space.   

Them any function f:M1→M2 is continuous i.e, any function whose domain is a discrete metric 

space is continuous. 

 Proof: 

Let x∈M1 and 𝜀 > 0be given 

Since M1 is discrete, for any 𝛿 > 1,𝐵(𝑥, 𝛿) = {𝑥} 

𝑓(𝐵(𝑥, 𝛿)) = 𝑓(𝑥) ⊆ 𝐵(𝑓(𝑥), 𝜀) 

Since x∈M1 is arbitrary, f is continuous. 

Theorem 3.1 

 Let (M1,d1) and (M2,d2) be the two metric spaces. Let a∈ M1.   A function f:M1→M2 

is continuous at a iff (xn)→ 𝑎 ⇒(f(xn))→f(a) 

 proof: 

Assume that f is continuous at a. 

Let (xn) be a sequence in M1 such that (xn)→ 𝑎 

We claim that (f(xn))→f(a) 

Let ε > 0be given 

By the definition of continuity, there exists 𝛿 > 0  such that 

d1(x,a)<𝛿 ⇒ d1(f(x),f(a))< 𝜀 -------------------(1) 

Also (xn)→ 𝑎 there exists a positive integer no such that d1(xn,a)<𝛿 for all n>no 

 ∴d2(f(xn),f(a))< 𝜀 for all n>no     [from(1)] 

  ∴(f(xn))→f(a) 

 Conversly, assume that (xn)→ 𝑎 ⇒(f(xn))→f(a) 

 We claim that f is continuous at a. 

 Suppose f is not continuous at a. 

 Then there exists 𝜀 > 0  such that for all𝛿 > 0 



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   60 

 

  (𝑓(𝐵(𝑎, 𝛿))   ⊄  𝐵(𝑓(𝑎), 𝜀) 

 In particular, (𝑓(𝐵(𝑎,
1

𝑛
))   ⊄  𝐵(𝑓(𝑎), 𝜀) 

 Choose xn such that 𝑥𝑛 ∈ 𝐵(𝑎,
1

𝑛
)  𝑎𝑛𝑑 𝑓(𝑥𝑛) ∉  𝐵(𝑓(𝑎), 𝜀) 

 𝑥𝑛 ∈ 𝐵(𝑎,
1

𝑛
)  ⇒ 𝑑1(𝑥𝑛 , 𝑎) <,

1

𝑛
 

𝑓(𝑥𝑛) ∉  𝐵(𝑓(𝑎), 𝜀) ⇒ 𝑑2(𝑓(𝑥𝑛), 𝑓(𝑎)) > 𝜀 

∴ (𝑓(𝑥𝑛)) ↛ 𝑓(𝑎), which is a contradiction to our assumption. 

  ∴ 𝑓 is continuous at a. 

Corollary: 

  A function f:M1→M2is continuous iff (𝑥𝑛) → 𝑎 ⇒ (𝑓(𝑥𝑛)) → 𝑓(𝑥). 

Theorem 3.2 

 Let (M1,d1) and (M2,d2) be the two metric spaces. Let a∈ M1.   A function f:M1→M2is 

continuous iff f-1(G) is open in M1 whenever G is open in M2. ie, f is continuous iff inverse 

image of every open set is open. 

Proof: 

 Suppose f is continuous  

Let G be an open set in M2 

 We claim that f-1(G) is open inM1  

 If f-1(G) is empty, then it is open. 

 Let f-1(G)≠ 𝜑 

 Let x∈ f-1(G) 

 Hence f(x)∈ G. 

 Since G is open, there exists an open ball B(f(x),𝜀) such that B(f(x),𝜀)⊆G  --------(1)                                                                                                      

 Now by definition of continuity, there exists an open ball B(x,𝛿) such that 
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f( B(x,𝛿)) ⊆ 𝐵(𝑓(𝑥), 𝜀) 

 ∴f( B(x,𝛿)) ⊆G      [by(1)] 

 ∴B(x,𝛿)) ⊆ 𝑓-1(G) 

Since x∈  𝑓-1(G) is arbitrary, 𝑓-1(G) is open. 

Conversly, suppose 𝑓-1(G) is open in M1 whenever G is open in M2. 

We claim that, f is continuous  

Let x∈M1 

Now B(f(x),𝜀) is a open set in M2 

 ∴ f-1(B(f(x),𝜀)) is open in M1 and x∈f-1(B(f(x),𝜀)) 

There exists 𝛿 > 0  such that B(x,𝛿)⊆ 𝑓-1(B(f(x),𝜀)) 

 ∴ 𝑓(B(x,𝛿))⊆B(f(x),𝜀) 

 ∴ f is continuous at x. 

Since x∈M1 is arbitrary, f is continuous. 

Note: 

 1.If f:M1→M2 is continuous and G is open in M1 then it if not necessary that f(G) is 

open in M2.ie, under a continuous map the image of an open set need not be an open set. 

For example: 

 Let M1=R with discrete metric and M2=R with usual metric. 

 Let f:M1→M2 be defined by f(x)=x. 

 Since M1 is discrete every subset of M1 is open. 

 Hence for any open subset G of M2, f
-1(G) is open in M1 

  ∴ f is continuous 

 Now, A={x} is open in M1 but f(A)={x} is not open in M2. 
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 2.In the above example, f is continuous bijection whereas f-1:M1→M2 is not continuous. 

  For,{x} is an open set in M2. 

  (f-1)-1({x})={x} which is not open in M2 

   ∴ f-1 is not continuous. 

  Thus if f is a continuous bijection f-1 need not be continuous. 

We now give wet another characterization of continuous function in terms of closed sets. 

Theorem 3.3 

 Let (M1,d1) and (M2,d2) be the two metric spaces.  A function f:M1→M2 is continuous 

iff f-1(F) is closed in M1 whenever F is closed in M2 

Proof: 

 Suppose f:M1→M2 is continuous  

 Let F⊆ M2 be closed in M2  

  ∴Fc  is open in M2 

  ∴  f-1(Fc) is open in M1 

But f-1(Fc) =[f-1(F)]c 

f-1(F) is closed in M1. 

Conversely, We claim that f is continuous  

Let G be an open set in M2 

 ∴ Gc is closed in M1 

 ∴f-1(Gc) is closed in M1 

[f-1(G)]c  is closed in M1 

[f-1(G)]  is open in M1 

 ∴[f-1(G)]  is open in M1 , whenever f is continuous  
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G is open in M2 

We give one more characterization of continuous function in terms of closure of a set. 

Theorem 3.4 

 Let (M1,d1) and (M2,d2) be the two metric spaces. Let a∈ M1.   A function f:M1→M2 is 

Continuous iff f(Ā)⊆ 𝑓(𝐴)̅̅ ̅̅ ̅̅  for all A⊆M1. 

Proof: 

 Suppose f is continuous  

 LetA⊆M1 then f(A)⊆M2 

 Since f is continuous, f-1( 𝑓(𝐴)̅̅ ̅̅ ̅̅  ) is closed in M1 

Also, f-1( 𝑓(𝐴)̅̅ ̅̅ ̅̅  )⊇A                [∵ 𝑓(𝐴)̅̅ ̅̅ ̅̅ ⊇f(A)] 

But 𝐴̅ is the smallest closed set containing A 

 ∴ 𝐴̅ ⊆ f-1( 𝑓(𝐴)̅̅ ̅̅ ̅̅  ) 

 ∴f(𝐴̅)⊆ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

Conversely, let f(𝐴̅)⊆ 𝑓(𝐴)̅̅ ̅̅ ̅̅   for all A⊆M1 

To prove  f is continuous, 

We shall show that if  F is closed set in M2 then f-1 is closed in M1 

By hypothesis  𝑓(𝑓−1(𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅) ⊆ 𝑓 𝑓−1(𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

   ⊆ 𝐹̅ 

        = F 

Thus, f (𝑓−1(𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐹 

 (𝑓−1(𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ f-1(F) 

Also f-1(F)⊆(f−𝑖(𝐹)̅̅ ̅̅ ̅̅ ̅̅  

 ∴f-1(F)= f-1(F) 
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Hence f-1(F) is closed.  Hence, f is continuous 

Problem:1 

 Let f be a continuous real value function defined on; a metric space M.  Let  

A={x∈M: f(x)≥0}.  Prove that A closed. 

Solution: 

  A= {x∈M: f(x)≥0} 

     = {x∈M: f(x)∈[0,∞)} 

  =  f-1([0,∞)) 

 Also [0,∞) is closed subset of R 

Since f is continuous  

f-1[0,∞) is closed in M 

 ∴ A is closed 

Problem:2 

 Show that function f: R→Rdefined by f(x)= {
0,  𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
1,  𝑖𝑓 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

   is not continuous 

by each of the following methods. 

i. By the usual 𝜀, 𝛿  method  

ii. By the exhibiting a sequence (xn) such (xn)→x and (f(xn)) does not converge to 

f(x) 

iii. By the exhibiting an open set G such that F-1(G) is not open 

iv. By exhibiting a closed subset F such that f-1(F) is not closed 

v. By exhibiting a subset of A of R such that f(𝐴)̅̅ ̅ ⊄ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

Solution: 

i. To prove f is not continuous at x 

We have to show that there exists an 𝜀 > 0 such that for all 𝛿 > 0, 
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f(B(x,𝛿))⊄B(f(x),𝜀)  

Let 𝜀 =
1

2
 

For any 𝛿 > 0,B(x,𝛿)=(x−𝛿 ,x+𝛿) contains both rational and irrational numbers 

If x is rational, choose y∈ 𝐵(𝑥, 𝛿) such that y is irrational and if x is irrational, choose 

y∈ 𝐵(𝑥, 𝛿) such that y is rational 

Then |𝑓(𝑥) − 𝑓(𝑦)|=1       [by the definition of f] 

i.e, d(f(x),f(y))=1 

  ∴ 𝑓(𝑦) ∉ 𝐵(𝑓(𝑥),
1

2
) 

 Thus y∈ 𝐵(𝑥, 𝛿) and f(y)∉  𝐵(𝑓(𝑥),
1

2
) 

 Hence f is not continuous at x 

ii. Let x∈ 𝑅 

Suppose x is rational then f(x)=1 

Let (xn) be a sequence of irrational numbers such that (xn)⟶ 𝑥 

Then (f(xn))⟶ 0and f(x)=1 

 ∴(f(xn)) does not converges to f(x) 

Proof is similar if x is irrational 

iii. Let G=(
1

2 
,
3

2
) 

Clearly G is open in R 

Now, f-1(G) = {x∈ 𝑅: 𝑓(𝑥) ∈ 𝐺} 

         = {x∈ 𝑅: 𝑓(𝑥) ∈  (
1

2 
,
3

2
)} 

        = Q 

But Q is not open in R 
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Thus f-1(G) is not open in R 

 ∴ f is not continuous 

iv. Choose F=[
1

2
 ,
3

2
] 

Then f-1(F)=Q which is not closed in R 

∴ f is continuous 

v. Let A=Q. Then 𝐴̅=R 

∴f(𝐴̅)=f(R) ={0,1}            [by definition of f] 

 Also, f(A)=f(Q)={1} 

  ∴ 𝑓(𝐴)̅̅ ̅={1̅}={1} 

  𝑓(𝐴)̅̅ ̅̅ ̅̅ ⊄ 𝑓(𝐴̅) 

  ∴ f is not continuous 

Problem:3 

 Let M1, M2, M3  be a metric spaces.  If f:M1⟶𝑀2  and g: M2⟶𝑀3  are continuous 

function.  Prove that gof: M1⟶𝑀3 is also continuous.  i.e, Composition of two continuous 

functions is also continuous. 

Solution: 

 Let G be open in M3 

 Since g is continuous, g-1(G) is open in M2 

 Now, since f is continuous, f-1(g-1(G)) is open in M1 

 ie, (gof)-1(G) is open in M1 

  ∴ gof is continuous 

Problem:4 
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 Let M be a metric space.  Let f:M⟶ 𝑅 and g:M⟶ 𝑅 be two continuous functions.   

Prove that f+g:M⟶ 𝑅 is continuous. 

Solution: 

  Let (xn) be a sequence converging to x in M 

 Since f and g are continuous functions, (f(xn))⟶f(x) and (g(xn))⟶g(x) 

  ∴(f(xn)+g(xn))⟶ 𝑓(x)+g(x) 

 ie, ((f+g)(xn)) ⟶ (𝑓+g)(x) 

  ∴ f+g is continuous 

Problem:5 

 Let f, g be continuous real valued functions on a metric space M.  Let 

A={x:x∈ 𝑀 𝑎𝑛𝑑 𝑓(𝑥) < 𝑔(𝑥)}.   Prove that A is open. 

Solution: 

Since f and g are continuous real valued functions on M, f−g is also a continuous real 

valued function on M. 

Now, A= {x: x∈ 𝑀 𝑎𝑛𝑑 𝑓(𝑥) < 𝑔(𝑥)} 

  = {x:x∈ 𝑀 𝑎𝑛𝑑 𝑓(𝑥) − 𝑔(𝑥) < 0} 

  = {x: x∈ 𝑀 𝑎𝑛𝑑 (𝑓 − 𝑔)(𝑥) ∈ (−∞, 0)} 

  = (f−𝑔)-1{(−∞, 0)} 

 Now, (−∞, 0) is open in R and 𝑓 − 𝑔 is continuous 

 Hence (𝑓 − 𝑔)-1{(−∞, 0)} is open in M 

  ∴ A is open in M 

Problem:6 

 If f:R⟶ 𝑅 and g:R⟶ 𝑅 are bothe continuous functions on R and if h:R2⟶R2 

is defined by h(x,y)=(f(x),g(y)). Prove that h is continuous on R2 
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 Solution:  Let (xn,yn) be sequence in R2 converging to (x,y) 

 We claim that (h(xn,yn)) converges to h(x,y) 

 Since (xn,yn)→ (𝑥, 𝑦) in R2, (xn)→ (𝑥) and (yn)→ (𝑦) in R2 

 Also f and g are continuous. 

  ∴ (f(xn))→ 𝑓(𝑥) and (g(yn))→ 𝑔(𝑦) 

  ∴ (f(xn),g(yn))→(f(x),g(y)) 

  ∴ (h(xn,yn))→h(x,y) 

  ∴ h is continuous on R2 

Problem:7 

 Let (M,d) be a metric space.  Let a∈ 𝑀.  Show that function f:M→R defined by 

f(x)=d(x,a) is continuous 

Solution: 

 Let x∈ 𝑀 

 Let (xn) be a sequence in M such that (xn)→ (𝑥) 

 We claim that (f(xn))→ 𝑓(𝑥) 

 Let 𝜀 > 0 be given 

 Now, |f(xn)−f(x)|= |d(xn,a)−d(x,a)| 

   ≤ d(xn,x) 

 Since (xn)→ (𝑥)  there exists a positive integer n1 such that d(xn,x)< 𝜀 for all n≥ 𝑛1 

  |f(xn)−𝑓(𝑥)| < 𝜀 for all n≥ 𝑛1 

  (f(xn))→ 𝑓(𝑥) 

  ∴ f is continuous 

Problem:8 

 Let f be a function from R2 onto r defined by f(x,y)=x for all (x,y)∈ 𝑅2.  Show that f is 

continuous in R2. 

Solution: 
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  Let (x,y)∈ 𝑅2  

Let((xn,yn)) be a sequence in R converging to (x,y). 

Then (xn)→ (𝑥) and (yn)→ (𝑦). 

∴ (f(xn,yn))=(xn)→ (𝑥) =  𝑓(𝑥, 𝑦) 

∴ (f(xn,yn))→  𝑓(𝑥, 𝑦) 

  ∴  𝑓 𝑖𝑠 continuous 

Problem:9 

 Define f: l2→l2  as follows.  If S∈ 𝑙2 is the sequence S1,S2,……  Let f(S) be the sequence 

0,S1,S2,…..  Show that f is continuous 

Solution: 

 Let y=(y1,y2,…….,yn)∈l2 

 Let (xn) be a sequence in l2 converging to y 

 Let xn=(xn1,xn2,…..,xnk,…) 

 Then (xn1)→y1 , (xn2)→y2,……., (xnk)→yk,……. 

  ∴ (f(xn))=((0, xn1,xn2,…..,xnk,…))→(0, y1,y2,…..,yk,…)=f(y) 

  ∴ (f(xn))→f(y) 

  ∴ f is continuous 

Problem:10 

 Let G be an open subset of R.  Prove that the characterization function on g defined 

by 𝜒𝐺(𝑥) = {
1,  𝑖𝑓 𝑥 ∈ 𝐺
0,  𝑖𝑓 𝑥 ∉ 𝐺

  is continuous at every point of G 

Solution: 

  Let x∈ 𝐺 so that 𝜒𝐺(𝑥)=1 

 Let 𝜀 > 0 be given  



Manonmaniam Sundaranar University, Directorate of Distance and Continuing Education, Tirunelveli   70 

 

 Since G is open and x∈ 𝐺, we can find a 𝛿 > 0 such that B(x,𝛿)⊆ 𝐺 

  ∴ 𝜒𝐺(B(x,𝛿))⊆ 𝜒𝐺(G) 

    ={1} 

     = 𝐵(1, 𝜀). 

 Thus 𝜒𝐺(B(x,𝛿))⊆B(𝜒𝐺(x),e) 

Homeomorphism 

Let (M1,d1) and (M2,d2) be two metric spaces.  A function f:M1→ 𝑀2  is called a 

homeomorphism if  

i. f is 1-1 and onto 

ii. f is continuous 

iii. f-1 is continuous 

 The metric spaces M1and M2 are said to be homeomorphic if there exists a homeomorphism 

𝑓:𝑀1 ⟶𝑀2 . 

Definition: 

 A function f:M1⟶𝑀2 is said to an open map if f(G) is open in M2 for every open set g 

in M1.  ie, f is an open map if the image of an open set in M1 is an open set in M2.  A function 

f:M1⟶𝑀2 is said to be a closed map if f(G) is closed in M2 for every closed set G in M1.  ie, f 

is a closed map if the image of a closed set in M1 is a closed set in M2. 

Note 1 : Let f:M1⟶𝑀2 be a bijection, then f-1 is continuous iff f is an open map. 

Proof: 

f-1:M1⟶𝑀2  is continuous iff (f-1)-1(G) is open in M2 whenever G is open in M1. 

  iff f(G) is open in M2 whenever G is open in M1. 

  iff G is open in M1 whenever f(G) is open in M2. 

  iff f is an open map. 

  ∴ f-1 is continuous iff f is an open map. 
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Note 2 : Similarly, f-1 is continuous iff f is a closed map 

Note 3 : Let f:M1⟶𝑀2  be a bijection, then the following are equivalent 

i. f is a homeomorphism 

ii. f is a continuous open map 

iii. f is a continuous closed open 

Note 4 : Let f:M1⟶𝑀2 be a homeomorphism, f is a homeomorphism iff it satisfies the 

condition F is closed in M1 iff  f(F) is closed in M1 

Note 5 :  Let f:𝑀1 → 𝑀2 is a bijection then f is a homeomorphism iffit  satisfies the condition 

F is closed in 𝑀1iff  f(F) is closed in 𝑀2 

Examples: 1 

The metric space [0,1] and [0,2] with  usual metric are homeomorphic. 

 Proof: 

 Define  𝑓: [0,1] → [0,2] defined by f(x)=2x. 

   𝑓(𝑥) = 𝑓(𝑦) ⇒  2𝑥 = 2𝑦 ⇒  𝑥 = 𝑦 

 ∴  𝑓 is one-one 

For all y∈ [0,2] there exist x∈ [0,1] such that 𝑓(𝑥) = 𝑦 

                     ⇒   2𝑥 = 𝑦 

                           ⇒ 𝑥 =
𝑦

2
∈  [0,1]. ∴ 𝑓 is onto 

 ∴ 𝑓 is bijection. 

Clearly 𝑓 is continuous. 

 Also 𝑓−1 (x) =
𝑥

2
 is also continuous. 

 ∴ f is homomorphism. 

Examples:2 

The metric space is (0,∞) and R with usual metrics are homeomorphic.  
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Proof: Define  f: (0,∞)→R defined by f(x)=𝑙𝑜𝑔𝑒 x 

 Now , f(x)=f(y) ⇒𝑙𝑜𝑔𝑒 x=𝑙𝑜𝑔𝑒 y  

 ⇒𝑒𝑙𝑜𝑔𝑒  x=𝑒𝑙𝑜𝑔𝑒𝑦 

               ⇒    x=y 

  ∴    f is one- one  

For all y∈R there exist x∈(0,∞) such that   f(x)=y 

 ⇒𝑙𝑜𝑔𝑒 x=y 

 ⇒𝑒𝑙𝑜𝑔𝑒  x = 𝑒𝑦 

 ⇒  x = 𝑒𝑦 ∈(0,∞) 

 ∴f is onto 

 ∴  f is bijection 

Clearly f: (0,∞)→R defined by f(x)=𝑙𝑜𝑔𝑒 x is continuous. 

               𝑓−1: (0,∞)→R defined by f(x)=𝑒𝑥 is continuous. 

 ∴  f is homeomorphism.   

Example :3 

The metric space (−𝜋 2⁄ ,𝜋 2⁄ )  and R with usual metric are homeomorphic. 

Proof: Define f: (−𝜋 2⁄ ,𝜋 2⁄ ) →R defined by f( x)=tanx. 

                                f(x)=f(y) ⇒tanx =tany 

                                              ⇒  x=y 

 ∴    f is one- one  

For all y∈R there exist x∈(−𝜋 2⁄ ,𝜋 2⁄ ) such that    f(x)=y 

 ⇒tanx=y        ⇒   x = 𝑡𝑎𝑛−1𝑦 ∈(−𝜋 2⁄ ,𝜋 2⁄ ) 
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 ∴ f is onto 

 ∴  f is bijection 

Clearly f: (−𝜋 2⁄ ,𝜋 2⁄ )→R defined by f(x)=tan x is continuous. 

 𝑓−1: R →(−𝜋 2⁄ ,𝜋 2⁄ ) defined by f(x)=𝑡𝑎𝑛−1𝑦 is also continuous. 

 ∴  f is homeomorphism.   

Example:4 

R with usual metric is not homeomorphic to R with discrete metric. 

Proof:   Let 𝑀1=R with usual metric 

Let 𝑀2=R with discrete metric 

          Let f:M1⟶𝑀2  be any bijection 

Now, {a}is open in 𝑀2 , but 𝑓−1({a}) is not open in M1. 

  ∴  f is not continuous  

Thus any bijection   f:M1⟶𝑀2 is not homeomorphism. 

 Hence M1 is not homeomorphism to 𝑀2 

Example:5 

           The metric spaces (0,1) and (0,∞) with usual metric are homeomorphic. 

Proof: Define  f:(0,1) → (0,∞)  defined by f(x) =
𝑥

1−𝑥
 

f(x)=f(y) ⇒
𝑥

1−𝑥
  =

𝑦

1−𝑦
 

  ⇒  x(1-y) =y(1-x) 

⇒x-xy = y-xy 

⇒x=y 

For all y∈(0,∞)   there exist x∈(0,1) such that   f(x)=y 
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 ⇒
𝑥

1−𝑥
  =y         

  ⇒
𝑥

1−𝑥
   =

 1

𝑦
 

  ⇒
 1

𝑥
 -1= 

 1

𝑦
 

  ⇒
 1

𝑥
 = 

 1

𝑦 
+1 

  ⇒x=
𝑦

1+𝑦
 

  ∴f is onto 

  ∴  f is bijection 

Clearly f is continuous. 

 𝑓−1: 
𝑥

1−𝑥
  is also continuous. 

 ∴  f is homeomorphism.   

Definition: Let (M1,𝑑1) and (𝑀2, 𝑑2) be two metric spaces.Let f: M1⟶𝑀2   be any bijection 

f is said to be isometry if    𝑑1(𝑥, 𝑦) = 𝑑2(𝑓(𝑥), 𝑓(𝑦)) for all x,y∈ M1 

In other words an isometry is an distance preserving map M1 and 𝑀2are said to be isometric if 

there exists an isometry f:M1onto 𝑀2  

Examples: 

1. R2 with usual metric and C with usual metric are isometric and f:R2⟶ 𝐶 defined 

by f(x,y)= x+iy is a required isometric. 

2.   Let d1 be the usual metric on [0,1] and d2 be the usual metric on [0,2] be map 

f:[0,1]⟶[0,2] defined by f(x)=2x is not a isometry. 

   d2(f(x),f(y))=|𝑓(𝑥) − 𝑓(𝑦)| 

             = |2𝑥 − 2𝑦| 

            = 2|𝑥 − 𝑦| 

            = 2d1(x,y) 

   ∴   d1(x,y)≠d2(f(x),f(y)) 

   ∴ f is not a isometry. 
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Note: 

 Since an isometry f preserves distances, the image of an open ball B(x,r) is the open 

ball B(f(x,r)). 

Uniform Continuity: 

 Let (M1,𝑑1) and (M2,𝑑2) be two metric spaces.  A function f:M1⟶𝑀2  is said to be 

uniformly continuous on M1 if given 𝜀 > 0, there exists 𝛿 > 0 such that d1(x,y)<𝛿 ⇒ 

d2(f(x),f(y))< 𝜀.   

Note:1 

          Uniform continuity is a global condition on the behaviour of a mapping on a set. 

Continuity is a local condition on the behaviour of function at a point. 

Note 2:       If f : M₁ → M₂ is uniformly continuous on M₁, then f is continuous at every 

point of 𝑀1, but a continuous function need not be uniformly continuous on 𝑀1. 

SOLVED PROBLEMS 

Problem 1:        Prove that f : [0,1] → R defined by f(x) = x² is uniformly continuous on 

[0,1]. 

Solution: 

                 Let ε > 0 be given. 

                Let x, y ∈ [0,1] 

                Then x ≤ 1, y ≤ 1 

                |f(x) - f(y)| = |x² - y²| 

                                      = |x - y| |x + y| 

                                     ≤ 2 |x - y| 

                          Let δ = ε / 2 

                If |x - y| < δ=
𝜀

2
 ⇒ |f(x) - f(y)| < ε 

∴ f is uniformly continuous on [0,1] 

Problem 2 :     Prove that f : (0,1)→R defined by 𝑓(𝑥) =
1

𝑥
 is not uniformly continuous. 

  Solution: 

                  Let ε > 0 be given. 
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                  Suppose there exists δ > 0 such that |x - y| < δ ⇒ |f(x) - f(y)| < ε 

                  Given f(x) = 1/x,  

                                 |
1

𝑥
−

1

𝑦
| < ε 

                   Take 𝑥 =  𝑦 +
𝛿

2
⇒ 𝑥 −  𝑦 =

𝛿

2
 

 Clearly |𝑥 − 𝑦| =
1

2
𝛿 < 𝛿. 

           ∴ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 

           ∴ |
1

𝑥
−

1

𝑦
| < 𝜀. 

           ∴ |
1

𝑦 +
𝛿

2

−
1

𝑦
| < 𝜀 

∴ |
𝑦 − (𝑦 +

𝛿
2)

(𝑦 +
𝛿
2) 𝑦

| < 𝜀 

∴ |
𝛿

2 (𝑦 +
𝛿
2)𝑦

| < 𝜀. 

∴ |
𝛿

(2𝑦 + 𝛿)𝑦
| < 𝜀. 

            This inequality cannot be true for all y ∈ (0,1). Since 
𝛿

(2𝑦+𝛿)𝑦
 becomes arbitrarily large 

as y approaches zero. 

∴ f is not uniformly continuous. 

Problem 3 :        Prove that the function f :R → R defined by f(x) = sin x is uniformly 

continuous on R. 

Solution: 

                 Let x, y ∈R and x > y. 

By Mean Value Theorem, 

   sin x - sin y = (x - y) cos z, where   𝑥 > 𝑧 >  𝑦. 

⇒ |f(x) - f(y)| = |sin x - sin y| 

                                            = |x - y||cos z|  

                                            ≤ |x - y| × 1 
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                                           = |x - y| 

      Hence for a given ε > 0, if we choose δ= 𝜀, we have 

 |x - y|≤ δ⇒|f(x) - f(y)| = |sin x - sin y| < ε 

∴ f(x) = sin x is uniformly continuous on R. 

Discontinuous functions on R 

               A function f : R → R is said to approach a limit 𝑙 as x → a if given ε > 0 there exists 

δ > 0 such that 0 < |x - a| < δ ⇒ |f(x) - 𝑙 | < ε and we write lim
  x→a 

f(x) = 𝑙. 

Definition: 

               A function f is said to have 𝑙 as the right limit at x = a if, given ε > 0, there exists      

δ > 0 such that a < x < a + δ ⇒ |f(x) - 𝑙 | < ε and we write lim
  x→a+ 

 f(x) = 𝑙. 

Also, we denote the right limit by f(a+). 

                 A function f is said to have 𝑙 as the left limit at x = a if, given ε > 0, there     exists 

δ > 0 such that a - δ < x < a ⇒ |f(x) - 𝑙 | < ε and we write lim
  x→a− 

f(x) = 𝑙. 

Also, we denote the left limit by f(a-). 

Notes: 

1. lim
  x→a 

f(x) exists if and only if the left and right limits of f(x) at x = a exist and are equal.  

2.The definition of continuity of f at x = a can be formulated as follows: 

             f is continuous at a if and only if f(a+) = f(a-) = f(a). 

 

3.  If lim
  x→a 

f(x) does not exist, then one of the following must hold: 

               (i) lim
  x→a⁺ 

 f(x) does not exist. 

              (ii) lim
  x→a− 

 f(x) does not exist. 

             (iii)  lim
  x→a⁺ 

f(x) and lim
  x→a− 

f(x) exist but are unequal. 

Definition          If a function f is discontinuous at a, then a is called a point of discontinuity 

for the function. 

         If a is a point of discontinuity of a function f, then any one of the following cases arises: 

                 (i)  lim
  x→a 

f(x) exists but is not equal to f(a). 

                (ii) lim
  x→a⁺ 

 f(x) and lim
  x→a− 

 f(x) exist and are not equal. 

               (iii) Either lim
  x→a− 

 f(x) or lim
  x→a⁺ 

f(x) does not exist. 
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Definition :  Let a be a point of discontinuity for f(x), then a is said to be a point of 

discontinuity of the first kind if  lim
𝑥→𝑎+

𝑓(𝑥) and lim
𝑥→𝑎−

𝑓(𝑥) exist and both of them are finite 

and unequal. 

The point a is said to be a point of discontinuity of the second kind if either if  

lim
𝑥→𝑎+

𝑓(𝑥)or if  lim
𝑥→𝑎−

𝑓(𝑥) does not exist or is infinite or if  lim
𝑥→𝑎−

𝑓(𝑥) does not exists. 

Definition : Let A ⊆R. A function f: A → R is called “monotonic increasing” if 𝑥 < 𝑦 ⇒

𝑓(𝑥) ≤ 𝑓(𝑦). 

          f is called monotonic decreasing if 𝑥 > 𝑦 ⇒ 𝑓(𝑥) ≥ 𝑓(𝑦). 

          A function f is called “monotonic” if it is either monotonic increasing or monotonic 

decreasing. 

Theorem 3.5  Let f: [a, b] → R be a monotonic increasing function.Then f has a left limit at 

every point of (a, b).  Also f  has a right limit at a and f has a left limit at b.  Further x < y ⇒f(x 

+) ≤ f(y –).  Similar result is true for monotonic decreasing function. 

Proof: Let f: [a, b] → R be monotonic increasing. 

Let x ∈ [a, b]. 

Then {f(t): a ≤ t < x} is bounded above by f(x). 

Let 𝑙 = l.u.b {f(t): a ≤ t < x} 

We claim that f(x–) = 𝑙. 

Let ε > 0 be given. By definition of l.u.b there exists t such that a ≤ t < x and 

  𝑙 – ε < f(t) ≤ 𝑙. 

∴t< u < x ⇒ 𝑙 – ε < f(t) ≤ f(u) ≤ f(x) 

(∵ f is monotonic increasing). 

⇒ 𝑙 – ε < f(u) ≤ 𝑙 

∴ x – δ < u < x ⇒ 𝑙 – ε < f(u) ≤ 𝑙 where δ = x – t 
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∴f(x–)= 𝑙. 

Similarly, we can prove thatf(x+) = g.l.b {f(t): x ≤ t ≤ b} 

Similarly, let f: [a, b] → R be monotonic decreasing. 

Let x ∈ [a, b]. 

Then {f(t): x < t ≤ b} is bounded below by f(x). 

Let 𝑙 = g.l.b {f(t): x < t ≤ b}. 

We claim that f(x+) = 𝑙. 

Let ε > 0 be given. By definition of g.l.b there exists t such that 

x < t ≤ b and 𝑙 ≤ f(t) < 𝑙 + ε. 

∴ t < u < x ⇒ 𝑙 ≤ f(t) < f(u) < 𝑙 + ε (∵ f is monotonic decreasing) 

⇒ 𝑙 ≤ f(u) < 𝑙 + ε 

∴ x < u < x + δ ⇒ 𝑙 ≤ f(u) < 𝑙 + ε where δ = x - t. 

∴ f(x+) = 𝑙. 

Now we shall prove that x < y ⇒f(x +) ≤ f(y -) 

Let x < y 

f(x +) = g.l.b {f(t): x ≤ t ≤ y} 

= g.l.b {f(t): x < t ≤ y}   ………………(1) 

f(y -) = l.u.b {f(t): a ≤ t < y} 

= l.u.b {f(t): x ≤ t <y}   ………………(2) 

From (1) & (2) we get f(x +) ≤ f(y -) 

Theorem 3.6 : Let f: [a, b] → R be a monotonic function. Then the set of points of [a, b] at 

which f is discontinuous is countable. 

Proof: Let E = {x: x ∈ [a, b] and f is discontinuous at x} 
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Let x ∈ E 

f(x+) and f(x−) exists andf(x−) ≤ f(x+) 

If f(x−) = f(x+), then f(x−) = f(x+) = f(x) 

∴ f is continuous at x, which is a contradiction to f(x−) ≠ f(x+) 

∴ f(x−) < f(x+) 

Now choose a rational number r(x) such that f(x−) < r(x) < f(x+) 

This defines a map r: E → Q which maps x to r(x) 

We claim that r is 1–1. 

Let 𝑥1 < 𝑥2. 

By the previous theorem: x < y ⇒ f(x+) ≤ f(y−) 

∴ 𝑥1 <𝑥2. ⇒ f(𝑥1+) ≤ f(𝑥2−) 

Also 𝑓(𝑥1 −) < 𝑟(𝑥1) < 𝑓(𝑥1 +)𝑎𝑛𝑑 𝑓(𝑥2 −) < 𝑟(𝑥2) < 𝑓(𝑥2 +). 

∴ 𝑟(𝑥1) < 𝑓(𝑥1 +) <  𝑓(𝑥2 −) < 𝑟(𝑥2) 

Thus 𝑥1 < 𝑥2⇒𝑟(𝑥1) < 𝑟(𝑥2). 

∴ 𝑟: 𝐸 → 𝑄 is 1–1 

Hence E is countable. 

Definition : A subset D of R is said to be of type Fσ if D can be expressed as the countable 

union of closed sets.i.e., D =𝑈𝑛=1
∞   𝐹𝑛 where 𝐹𝑛 is a closed subset of R. 

Notes: 

1. Any closed subset F is of type Fσ since F=𝑈𝑛=1
∞  𝐹𝑛 where 𝐹𝑛 = F for all n. 

2. A set of type Fσ need not be closed. 

   Example: Q is of type 𝐹𝜎 but Q is not closed. 
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Definition : Consider any function f: R → R.  Let I be a bounded open interval in R. Then the 

oscillation of f over I is denoted by ω(f, I) and it is defined by 

𝜔(𝑓, 𝐼)  =  𝑙. 𝑢. 𝑏 {𝑓(𝑥): 𝑥 ∈  𝐼}  −  𝑔. 𝑙. 𝑏 {𝑓(𝑥): 𝑥 ∈  𝐼}. 

If a ∈R, then the oscillation off at a is denoted by ω(f, a)and it is defined by 𝜔(𝑓, 𝑎)  =

 𝑔. 𝑙. 𝑏𝜔(𝑓, 𝐼) where the g.l.b is taken over all bounded open intervals     containing a. 

Note: 

1. For any n ∈ Z, 𝜔(𝑓, 𝑛)  =  1. 

2. From the definition 𝜔(𝑓, 𝐼)  ≥  0 for any I. 

   Hence 𝜔(𝑓, 𝑎)  ≥  0 for any a ∈ R. 

Theorem 3.7 : A function f: R → R is continuous at a ∈ R iff 𝜔(𝑓, 𝑎)  =  0. 

Proof: 

Suppose f is continuous at a. 

To prove 𝜔(𝑓, 𝑎)  =  0. 

Let ε > 0 be given.  

Then there exists δ > 0 such that |𝑥 −  𝑎|  <  𝛿 ⇒  |𝑓(𝑥)  −  𝑓(𝑎)|  <  𝜀/2 

𝐿𝑒𝑡 𝐼 =  (𝑎 −  𝛿, 𝑎 +  𝛿) 

For any 𝑥 ∈  𝐼, |𝑓(𝑥) −  𝑓(𝑎)| <
𝜀

2
 

|𝑓(𝑥)  −  𝑓(𝑦)|  =  |𝑓(𝑥)  −  𝑓(𝑎)  +  𝑓(𝑎)  −  𝑓(𝑦)| 

≤  |𝑓(𝑥)  −  𝑓(𝑎)|  +  |𝑓(𝑦)  −  𝑓(𝑎)| 

<  𝜀/2 +  𝜀/2 =  𝜀 

For any 𝑥, 𝑦 ∈  𝐼, |𝑓(𝑥) −  𝑓(𝑦)| <  𝜀 

∴ 𝜔(𝑓, 𝐼)  <  𝜀 

∴ 𝑔. 𝑙. 𝑏𝜔(𝑓, 𝐼)  <  𝜀 
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𝑖. 𝑒. , 𝜔(𝑓, 𝑎)  <  𝜀 

Since ε > 0 is arbitrary, 𝜔(𝑓, 𝑎)  =  0. 

Conversely, assume that 𝜔(𝑓, 𝑎)  =  0. 

To prove f is continuous at a. 

Let ε > 0 be given. 

We have 𝜔(𝑓, 𝑎)  =  0. 

⇒ 𝑔. 𝑙. 𝑏𝜔(𝑓, 𝐼)  =  0. 

∴ There exists a bounded open interval I containing a such that 0 < 𝜔(𝑓, 𝐼)  <  𝜀. 

Let 𝑥₁, 𝑥₂ ∈ I. 

Then f(𝑥₁)  ≤  𝑙. 𝑢. 𝑏{ 𝑓(𝑥) ∶  𝑥 ∈ 𝐼 }𝑎𝑛𝑑 𝑓(𝑥₂)  ≥  𝑔. 𝑙. 𝑏{ 𝑓(𝑥) ∶  𝑥 ∈ 𝐼 } 

⇒  −𝑓(𝑥₂)  ≤  − 𝑔. 𝑙. 𝑏{ 𝑓(𝑥) ∶  𝑥 ∈ 𝐼 } 

⇒  |𝑓(𝑥₁)  −  𝑓(𝑥₂)|  ≤  𝑙. 𝑢. 𝑏{ 𝑓(𝑥) ∶  𝑥 ∈ 𝐼 }  −  𝑔. 𝑙. 𝑏{ 𝑓(𝑥) ∶  𝑥 ∈ 𝐼 } 

=  𝜔(𝑓, 𝐼)  <  𝜀 

∴  |𝑓(𝑥₁)  −  𝑓(𝑥₂)| <  𝜀 

In particular, |𝑓(𝑥)  −  𝑓(𝑎)|  <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝐼. 

Since I is a bounded open interval containing a, we can choose δ > 0 such that 

 (𝑎 −  𝛿, 𝑎 +  𝛿)  ⊆  𝐼. 

∴  |𝑓(𝑥)  −  𝑓(𝑎)|  <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 ∈  (𝑎 −  𝛿, 𝑎 +  𝛿) 

∴  |𝑥 −  𝑎|  <  𝛿 ⇒  |𝑓(𝑥)  −  𝑓(𝑎)|  <  𝜀 

∴  𝑓 is continuous at a. 

Theorem 3.8 : Let f : R → R be any function.  𝐿𝑒𝑡 𝑟 >  0.  

𝑇ℎ𝑒𝑛 𝐸𝑟  =  {𝑎 ∈  𝑅 | 𝜔(𝑓, 𝑎)  ≥  1/𝑟} 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡. 

Proof: Let x be any limit point of 𝐸𝑟. 
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We claim that x ∈ 𝐸𝑟. 

For this, we must prove that ω(f, x) ≥ 1/r. 

 Now let I be any bounded open interval containing x. 

Since x is the limit point of Eᵣ, I contains a point y of Eᵣ. 

Hence I is a bounded open interval containing y. 

∴ 𝜔(𝑓, 𝑦)  ≤  𝜔(𝑓, 𝐼) 

𝑆𝑖𝑛𝑐𝑒 𝑦 ∈  𝐸ᵣ, 𝜔(𝑓, 𝑦)  ≥  1/𝑟 

∴  𝑤𝑒 ℎ𝑎𝑣𝑒 𝜔(𝑓, 𝐼)  ≥  𝜔(𝑓, 𝑦)  ≥  1/𝑟 

This is true for any bounded open interval I containing x. 

∴ 𝜔(𝑓, 𝑥)  ≥  1/𝑟 

∴  𝑥 ∈  𝐸ᵣ 

∴ Eᵣ contains all its limit points. 

 Hence Eᵣ is closed. 

 Theorem 3.9 : Let D be the set of points of discontinuities of a function f : R → R. Then D 

is of type Fσ. 

Proof: Let D be the set of points of discontinuities of f. 

To prove: D is of type Fσ. 

i.e., To prove D = 𝑈𝑛=1
∞ 𝐸𝑛 , where 𝐸𝑛 = {a ∈ R | ω(f, a) ≥ 1/n} is closed. 

Let x ∈ D. 

∴ f is discontinuous at x. 

∴ω(f, x) > 0. 

⇒ω(f, x) ≥ 1/n for some n > 0. 

∴ x ∈𝐸𝑛 for some n > 0. 
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∴ x ∈𝑈𝑛=1
∞  𝐸𝑛. 

 x ∈ D ⇒ x ∈𝑈𝑛=1
∞  𝐸𝑛 

∴ D ⊆𝑈𝑛=1
∞  𝐸𝑛                        ……………… (1) 

Let x ∈𝑈𝑛=1
∞  𝐸𝑛 

x ∈ 𝐸𝑛 for some positive integer n. 

∴ω(f, x) ≥ 1/n for some n > 0 

Hence ω(f, x) > 0 

∴ f is discontinuous at x. 

Hence x ∈ D 

x ∈𝑈𝑛=1
∞  𝐸𝑛 ⇒ x ∈ D 

∴𝑈𝑛=1
∞  𝐸𝑛 ⊆ D — (2) 

From (1) & (2), 

D = 𝑈𝑛=1
∞  𝐸𝑛 

Also each 𝐸𝑛 is closed. 

Thus D is a countable union of closed sets. 

∴ D is of type Fσ 

Theorem 3.10 : There is no function f : R → R such that f is continuous at each rational 

number and discontinuous at irrational number. 

Proof: Suppose A is of type Fσ. 

Then A = ⋃ 𝐹𝑛
∞
𝑛=1   where each Fn is closed. 

Now, since Fn contains only irrational number, Fn cannot contain any open interval. 

∴ Int Fn = φ 

Int 𝐹𝑛̅̅̅̅  = φ  [∵Fn is closed] 
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∴ 𝐹𝑛 is nowhere dense 

∴ A is of first category, which is a contradiction. 

∴ A is not of type Fσ. 

Hence, the theorem. 

Exercises  

1. Let 𝑓: 𝑅 → 𝑅 be defined by 𝑓(𝑥) = {
−2 𝑖𝑓 𝑥 < 0
2 𝑖𝑓 𝑥 ≥ 0

.  Prove that f is not continuous. 

2. Let (M,d) be any metric space.  Let 𝑓:𝑀 → 𝑅 and g:𝑀 → 𝑅 be any two continuous 

functions. Define  

(i) (𝑓𝑔)(𝑥) = 𝑓(𝑥)𝑔(𝑥) 

(ii) (𝑐𝑓)(𝑥) = 𝑐𝑓(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑐 ∈ 𝑅. 

(iii) (
𝑓

𝑔
) (𝑥) =

𝑓(𝑥)

𝑔(𝑥)
 if g(x)≠0 for all x∈ 𝑀. 

Prove that fg. cf and f/g are all continuous. 

3. Give an example of a map from R to itself which is continuous and closed but not an 

open map. [Hint : Consider any constant map] 

4. Let (M,d) be any metric space.  Prove that the identity map 𝑖: 𝑀 → 𝑀 is a 

homeomorphism. 

5. Determine which of the following functions are uniformly continuous. 

(i) f: 𝑅 → 𝑅 defined by 𝑓(𝑥) = 𝑘𝑥 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑅. 

(ii) f: 𝑅 → 𝑅 defined by 𝑓(𝑥) = 𝑥3. 

(iii) f: (0,1) → 𝑅 defined by 𝑓(𝑥) =
1

1−𝑥
. 

6. Let 𝑓: 𝑅 → 𝑅 and 𝑔:𝑅 → 𝑅 be two functions uniformly continuous on R.  Prove that 

𝑓 + 𝑔 is also uniformly continuous on R. 

7. Is the product of uniformly continuous real valued functions again uniformly 

continuous? 
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UNIT IV 

CONNECTEDNESS 

Definition: Let (M, d) be a metric space, then M is said to be connected if M cannot be 

expressed as the union of two disjoint non-empty open sets.  If M is not connected it is said to 

be disconnected. 

Examples: 

1. Let M= [1,2] U [3,4] with usual metric. Then M is disconnected. 

Proof:       [1,2] & [3,4] are open in M. 

      Also, A=[1,2] ≠ Φ; B =[3,4] ≠ Φ &       A∩B = Φ 

      Thus, M is the Union of two disjoint non-empty open sets. 

2.  In a discreate metric space M with more than one point is disconnected. 

Proof:       Let A be a proper non-empty subset of M. 

      Since M has more than one point such a set exist.  

      The AC is also non-empty. 

Since M is discrete every subset of M is open. 

∴A& AC are open. 

Thus, M=AU AC, where A& AC are two disjoint non-empty open set.  

∴M is not connected. 

 

THEOREM 4.1:  Let (M, d) be a metric space. Then the following are equivalent. 

(i) M is connected. 

(ii) M cannot be written as the union of two disjoint non-empty closed sets. 

(iii) M cannot be written as the union of two non-empty sets A&B such that A∩B̅= 

A̅∩B = Φ. 

(iv) M& Φ are the only sets which are both open & closed in M. 

Proof: (i)=>(ii) 

Assume that M is connected. 

To Prove: M cannot be written as the union od two disjoint non-empty closed sets. 
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Suppose M can be written as the union of two disjoint non-empty closed sets. 

∴M=AUB, where A&B are closed, 

A≠ Φ, B≠ Φ & A∩B = Φ. 

Since, A∩B=Φ, Ac=B, Bc=A. 

Since, A&B are closed, AC & BC are open. 

∴ B & A are open. 

∴ M=AUB, where A&B are open, A≠ Φ, B≠ Φ & A∩B = Φ. 

∴ M is disconnected. which is a contradiction. 

∴ Our assumption is wrong. 

             Hence, M cannot be written as the union of two disjoint non-empty closed sets. 

(ii)=>(iii) 

Assume that M cannot be written as the union of two disjoint non-empty closed sets. 

To Prove: M cannot be written as the union of two disjoint non-empty sets A&B such 

that A∩B̅= A̅∩B = Φ. 

Suppose M can be written as the union of two disjoint non-empty sets A&B such that 

A∩B̅= A̅∩B = Φ. 

We claim that A & B are closed sets. 

i.e.)., To Prove: A=A̅ & B=B̅. 

Let x∈A̅ 

We have A̅∩B= Φ. 

∴x ∉ B  

∴ 𝑥 ∈ 𝐴 (since, AUB=M) 

∴ A̅⊆A 
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Always A ⊆A̅ 

Hence, A= A̅ 

Let x ∈ B̅ 

We have A∩ B̅ = Φ. 

∴x ∉ A 

Since AUB=M, x ∈ B, x ∉A 

∴B̅⊆B 

Always B ⊆ B̅ 

∴B= B̅ 

Also, A∩B̅= A̅∩B = Φ. 

∴ M can be written as the union of two disjoint non-empty sets, which is acontradiction to our 

assumption.  

 Hence, M cannot be written as the union of two non-empty sets A&B such that A∩B̅= 

A̅∩B = Φ. 

(iii)=>(iv) 

Assume that M cannot be written as the union of two non-empty sets A&B such that 

A∩B̅= A̅∩B = Φ. 

 To prove M & Φ are the only sets which are both open & closed in M. 

Suppose M & Φ are the only sets which are both open & closed in M is not true. 

Then there exists A⊆M such that A≠M & A≠Φ & A is both open and closed. 

Let B= AC  

Then B is also both open and closed & B≠Φ. 

Also, M=AUB 

Further, A̅∩B =A∩AC = Φ.                  [since, A is closed, A= A̅ & B= AC] 
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Similarly, 

If A= BC, then A∩B̅=Φ 

∴ M=AUB, where A∩B̅= A̅∩B =Φ. 

which is contradiction to (iii) 

∴ Our assumption is wrong. 

Hence (iii)=>(iv). 

(iv)=>(i) 

Assume that M is connected. 

Prove that M & Φ are the only sets which are both open & closed in M. 

Suppose M is not connected. 

∴ M=AUB, where A≠Φ, B≠Φ, A& B are open and A∩B =Φ. 

Then BC=A. 

Now, Since B is open, BC is closed. 

∴ A is closed. 

Also, A≠Φ & A≠M. 

∴ A is the proper non-empty subset of M which is both open & closed which is a 

contradiction to both. 

Hence,  (iv)=>(i). 

EQUIVALENT CHARACTERIZATIONS FOR COMPACTNESS 

Theorem 4.2 : A metric space M is connected iff there does not exist a continuous function f: 

M onto the discrete metric space {0, 1}. 

Proof: Suppose M is connected. 

To prove: there does not exist a continuous function f: M onto the discrete metric space 

{0, 1}. 
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Suppose there exists a continuous function f: M onto {0, 1}. 

Since {0, 1} is discrete, {0} and {1} are open. 

∴A =𝑓−1 ({0}) and B = 𝑓−1({1}). 

We know that: Inverse image of every open set is open. 

∴ 𝑓−1 ({0}) and 𝑓−1 ({1}) are open in A. 

∴ A and B are open in M. 

Since f is onto, A and B are non-empty. 

Clearly, A ∩ B = ∅ and A ∪ B = M. 

Thus, M = A ∪ B, where A and B are disjoint non-empty open sets. 

∴ M is not connected, which is a contradiction. 

Hence, there does not exist a continuous function {0, 1}. 

Conversely, Assume that there does not exist a continuous function f: M onto the 

discrete metric space {0, 1}. 

To Prove: M is connected. 

Suppose M is not connected. 

Then there exist disjoint non-empty open sets A and B in M such that M = A ∪ B. 

Now, define f: M → {0, 1} at𝑓(𝑥) = {
0          𝑖𝑓 𝑥 ∈ 𝐴
1         𝑖𝑓 𝑥 ∈ B

 

Clearly, f is onto. 

Also, 𝑓−1 (∅) = ∅, 𝑓−1 ({0}) = A, and 𝑓−1 ({1}) = B, 𝑓−1 ({0, 1}) = M. 

Thus, the inverse image of every open set in {0, 1} is open in M. 

Hence, f is continuous, which is a contradiction to our assumption. 

Thus, M is connected. 
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Note : The above theorem can be restated as follows: 

M is connected iff every continuous function f: M → {0, 1} is not onto. 

SOLVED PROBLEMS 

Problem 1 : Let M be a metric space. Let A be a connected subset of M.  If B is the subset of 

M such that A ⊆ B ⊆ Ā, then B is connected. In particular, Ā is connected. 

Solution: Let M be a metric space. Let A be a connected subset of M.  If B is the subset of M 

such that A ⊆ B ⊆ Ā. 

 To prove B is connected. 

Suppose B is not connected.  

Then B =  𝐵₁ ∪  𝐵₂ 𝑤ℎ𝑒𝑟𝑒 𝐵₁ ≠  ∅, 𝐵₂ ≠  ∅, 𝐵₁ ∩  𝐵₂ =  ∅ and 𝐵₁, 𝐵₂ are open in 

B. 

Now, since 𝐵₁ 𝑎𝑛𝑑 𝐵₂ are open sets in B, there exist open sets 𝐺₁ 𝑎𝑛𝑑 𝐺₂ in M such 

that 𝐵₁ =  𝐺₁ ∩  𝐵 𝑎𝑛𝑑 𝐵₂ =  𝐺₂ ∩  𝐵. 

∴ 𝐵 =  𝐵₁ ∪  𝐵₂ =  (𝐺₁ ∩  𝐵)  ∪  (𝐺₂ ∩  𝐵)  =  (𝐺₁ ∪  𝐺₂)  ∩  𝐵. 

∴  𝐵 ⊆  𝐺₁ ∪  𝐺₂. 

∴ 𝐴 ⊆  𝐺₁ ∪  𝐺₂   [Since A ⊆ B]. 

∴  𝐴 =  (𝐺₁ ∪  𝐺₂)  ∩  𝐴 =  (𝐺₁ ∩  𝐴)  ∪  (𝐺₂ ∩  𝐴). 

Now, 𝐺₁ ∩  𝐴 𝑎𝑛𝑑 𝐺₂ ∩  𝐴 are open in A. 

Further, (𝐺₁ ∩  𝐴)  ∩  (𝐺₂ ∩  𝐴)  =  (𝐺₁ ∩  𝐺₂)  ∩  𝐴. 

                                         =  (𝐺₁ ∩  𝐺₂)  ∩  𝐴    [𝑆𝑖𝑛𝑐𝑒 𝐴 ⊆  𝐵] 

=  (𝐺₁ ∩  𝐵)  ∩ (𝐺₂ ∩  𝐵)  

=  𝐵₁ ∩  𝐵₂  

=  ∅. 

∴  (𝐺₁ ∩  𝐴)  ∩ (𝐺₂ ∩  𝐴)  =  ∅. 
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Now, since A is connected, either 𝐺₁ ∩  𝐴 =  ∅ 𝑜𝑟 𝐺₂ ∩  𝐴 =  ∅. 

Without loss of generality, let us assume that 𝐺₁ ∩  𝐴 =  ∅. 

Since 𝐺₁ is open in M, we have 𝐺₁ ∩  𝐴  =  ∅. 

∴ 𝐺₁ ∩  𝐵 =  ∅.                [𝑠𝑖𝑛𝑐𝑒, 𝐵 ⊆  𝐴 ] 

∴ 𝐵₁ =  ∅, which is a contradiction. 

∴ B is connected. 

In particular, Ā is also connected. 

Problem 2 : If A and B are connected subsets of a metric space M and if A ∩B≠Φ, prove that 

A∪B is connected. 

Solution: Let f: A∪B→{0,1} be a continuous function. 

Since, A ∩B≠Φ, we can choose x0∈ A ∩ B. 

Let f(x0)=0. 

∴ f: A ∪ B → {0,1} is continuous f/A: A →{0,1}is also continuous. 

But A is connected.  

Hence f/A is not onto.  

∴ f(x) = 0 for all x ∈ A or f(x) = 1 for all x ∈ A.  

But f(x0) = 0 and x0 ∈ A. 

∴f(x) = 0 for all x ∈ A.  

Similarly, 

f(x) = 0 for all x ∈B. 

∴f(x) = 0 for all x ∈ AUB. 

Thus, any continuous function f: A ∪ B → {0,1}is not onto.  

∴ A ∪ B is connected. 

CONNECTED SUBSETS OF R 

Theorem 4.3 : A subspace of R is connected iff it is an interval. 

Proof: Let A be a connected subset of ℝ. 

Suppose A is not an interval. 
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Then there exists 𝑎, 𝑏, 𝑐 ∈  ℝ such that a < b < c and a, c ∈ A, but b ∉ A. 

Let 𝐴₁ =  (−∞, 𝑏)  ∩  𝐴  and 𝐴₂ =  (𝑏,∞) ∩  𝐴. 

Since (-∞, b) and (b, ∞) are open in ℝ,𝐴₁ 𝑎𝑛𝑑 𝐴₂ are open sets in A. 

Also, 𝐴₁ ∩  𝐴₂ =  ∅ 𝑎𝑛𝑑 𝑐 ∈  𝐴₂. 

Further, 𝑎 ∈  𝐴₁ 𝑎𝑛𝑑 𝑐 ∈  𝐴₂. 

Hence 𝐴₁ ≠  ∅ 𝑎𝑛𝑑 𝐴₂ ≠  ∅. 

Thus, A is the union of two disjoint non-empty open sets 𝐴₁ 𝑎𝑛𝑑 𝐴₂. 

Hence A is not connected, which is a contradiction. 

Hence A is an interval. 

Conversely, Let A be an interval. 

We claim that A is connected. 

Suppose A is not connected. 

Let 𝐴 =  𝐴₁ ∪  𝐴₂ 𝑤ℎ𝑒𝑟𝑒 𝐴₁ ≠  ∅, 𝐴₂ ≠  ∅, 𝐴₁ ∩  𝐴₂ =  ∅ 𝑎𝑛𝑑 𝐴₁, 𝐴₂ are 

closed sets in A. 

Choose 𝑥 ∈  𝐴₁ 𝑎𝑛𝑑 𝑧 ∈  𝐴₂. 

Since 𝐴₁ ∩  𝐴₂ =  ∅, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥 ≠  𝑧. 

Either 𝑥 <  𝑧 𝑜𝑟 𝑧 >  𝑥. Without loss of generality, we assume that 𝑥 <  𝑧. 

Now, since A is an interval, we have [x, z] ⊆ A. 

i.e., [𝑥, 𝑧]  ⊆  𝐴₁ ∪  𝐴₂. 

∴Every element of [x, z] is either in 𝐴₁ 𝑜𝑟 𝑖𝑛 𝐴₂. 

Now let 𝑦 =  𝑙. 𝑢. 𝑏{[𝑥, 𝑧]  ∩  𝐴₁}. 

Clearly 𝑥 ≤  𝑦 ≤  𝑧. 

Hence y ∈ A. 
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Let ε > 0 be given. Then by the definition of l.u.b, there exists 𝑡 ∈  [𝑥, 𝑧]  ∩

 𝐴₁ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 −  𝜀 <  𝑡 ≤  𝑦. 

∴  (𝑦 −  𝜀, 𝑦 +  𝜀)  ∩ ([𝑥, 𝑧]  ∩  𝐴₁)  ≠  ∅ 

⇒  𝑦 ∈  [𝑥, 𝑧]  ∩  𝐴₁ 

𝑦 ∈  [𝑥, 𝑧]  ∩  𝐴₁    [𝑠𝑖𝑛𝑐𝑒, [𝑥, 𝑧]  ∩  𝐴₁ 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝐴] 

∴  𝑦 ∈  𝐴₁           …………………. (1) 

Again, by the definition of 𝑦, 𝑦 +  𝜀 ∈  𝐴₂ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀 >  0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 +  𝜀 ≤  𝑧 

∴  𝑦 ∈  𝐴 ₂ 

∴  𝑦 ∈  𝐴₂           ……………… . (2)(𝑠𝑖𝑛𝑐𝑒 𝐴₂ 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑) 

𝑦 ∈  𝐴₁ 𝑎𝑛𝑑 𝑦 ∈  𝐴₂  

𝑦 ∈  𝐴₁ ∩  𝐴₂ [𝑏𝑦 (1) & (2)] 

which is a contradiction. 

Since 𝐴₁ ∩  𝐴₂ ≠  ∅, 

Hence A is connected. 

Theorem 4.4 :  R is connected. 

Proof: By previous theorem, a⊆ R is connected if it is an interval. 

We have R = (-∞, ∞) is an interval. 

∴ R is connected. 

SOLVED PROBLEMS 

Problem 1: Give an example to show that a subspace of a connected metric space need not be 

connected. 

Solution: We know that R is connected. 

Let A = [1,2] ∪ [3,4] is a subspace of R. 

But A = [1,2] ∪ [3,4] is not connected. 

∴A subspace of a connected metric space need not be connected. 
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Problem 2 : Prove or disprove: If A and C are connected subsets of a metric space M and if 

𝐴 ⊆  𝐵 ⊆ 𝐶, then B is connected. 

Solution: 

We disprove the statement by giving a counterexample. 

Let A = [1,2], B = [1,2] ∪ [3,4], C = R. 

Clearly, A ⊆ B ⊆ C 

Here A and C are connected, but B is not connected. 

CONNECTEDNESS AND CONTINUNITY 

Theorem 4.5  : Let M₁ be a connected metric space. Let M₂ be any metric space.    

Let f: M₁ → M₂ be a continuous function. Then f(M₁) is a connected subset of M₂. 

(i.e.) Any continuous image of a connected set is connected. 

Proof: 

𝐿𝑒𝑡 𝑓: 𝑀₁ →  𝑀₂ 𝑏𝑒 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑀₁ 𝑏𝑒 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒. 

Let f(M₁) = A. 

So that f is a function from M₁ onto A. 

We claim that A is connected. 

Suppose A is not connected. 

Then there exists a proper non-empty subset B(A) which is both open and closed in A. 

∴ f⁻¹(B) is a proper non-empty subset of M₁ which is both open and closed in M₁. 

Hence, M₁ is not connected, which is a contradiction.   [since, M₁ is connected].  

∴ A is connected. 

Theorem 4.6 : INTERMEDIATE VALUE THEOREM 

Statement : Let f be a real-value continuous function defined on an interval I. Then f takes 

every value between any two values it assumes. 

Proof: Let f be a real-value continuous function defined on an interval I. 
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Let a, b ∈ I and let 𝑓(𝑎)  ≠  𝑓(𝑏). 

Then either 𝑓(𝑎)  <  𝑓(𝑏) 𝑜𝑟 𝑓(𝑎)  >  𝑓(𝑏). 

Without loss of generality, we assume that 𝑓(𝑎)  <  𝑓(𝑏). 

Let c be such that 𝑓(𝑎)  <  𝑐 <  𝑓(𝑏). 

The interval I is a connected subset of R. 

Since 𝑓 is continuous and I is a connected subset of R 𝑓(𝐼) is a connected subset of 

R. [Since, the continuous image of a connected set is connected]. 

We have a subspace of R is connected iff it is an interval. 

∴ 𝑓(𝐼) is an interval. 

Also, 𝑓(𝑎), 𝑓(𝑏)  ∈  𝑓(𝐼). 

Hence, [𝑓(𝑎), 𝑓(𝑏)] ⊆  𝑓(𝐼). 

∴ 𝑐 ∈  𝑓(𝐼) 

∴ 𝑐 =  𝑓(𝑥) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈  𝐼. 

Thus, 𝑓 takes every value between any two values. 

SOLVED PROBLEMS 

Problem 1 : Prove that if f is a non-constant real-valued continuous function on R, then the 

range of f is uncountable. 

Solution: We know that R is connected. 

Since f is a continuous function on R, f(R) is a connected subset of R. (Since, 

Continuous image of a connected set is connected.) 

∴ f(R) is an interval in R. 

Also, since f is a non-constant function, the interval f(R) contains more than one 

point. 

∴ f(R) is uncountable. 

Thus, the range of f is uncountable. 

NOTES : 

1. Q (the set of rational numbers) is not connected. 

2. If M is a metric space and x ∈ M, then {x} is a connected subset of M. 

3. A subset of a discrete metric space is connected iff it is a {}. 
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Exercises : 

1. Prove that [0,1] is not a connected subset of R with discrete metric. 

2. Prove that any connected subset of R containing more than one point is uncountable. 

[Hint : Any interval containing more than one point is uncountable] 

3. Determine which of the following statements are true and which are false. 

(i) R is connected 

(ii) Q is connected. 

(iii) A subspace of a connected space is connected. 

(iv) If A and B are connected subsets of a metric space M then AUB is connected. 

(v) Any discrete metric space having more than one point is disconnected. 

CONTRACTION MAPPING THEOREM 

Definition: Let (M, d) be a metric space. A mapping T: M → M is called a contraction mapping 

if there exists a positive real number α < 1 such that  

𝑑(𝑇(𝑥), 𝑇(𝑦))  ≤  𝛼 𝑑(𝑥, 𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑀. 

Note: If T is a contraction mapping, then the distance d(T(x), T(y)) is less than the distance 

d(x, y). 

Example 1: Let T: [0, 1/3] → [0, 1/3] defined by T(x) = x2 is a contraction mapping. 

Solution: Let 𝑥, 𝑦 ∈  [0, 1/3]. 

𝑇ℎ𝑒𝑛 𝑥 ≤  1/3 𝑎𝑛𝑑 𝑦 ≤  1/3. 

𝑑(𝑇(𝑥), 𝑇(𝑦))  =  |𝑇(𝑥)  −  𝑇(𝑦)|  

=  |𝑥² −  𝑦²| 

               =  |(𝑥 +  𝑦)(𝑥 −  𝑦)|  

  ≤  (
2

3
) |𝑥 −  𝑦|. 

=  (
2

3
)  𝑑(𝑥, 𝑦) 

Here, 𝛼 =  2/3 <  1. 

∴  𝑑(𝑇(𝑥), 𝑇(𝑦))  ≤  (
2

3
)  𝑑(𝑥, 𝑦) 

∴ T is a contraction mapping. 
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Example 2 : T: R → R be defined by 𝑇(𝑥)  =  
1

2
𝑥  is a contraction mapping since 

𝑑(𝑇(𝑥),𝑇(𝑦)) =
1

2
𝑑(𝑥, 𝑦). 

Example 3 : The function 𝑇: 𝑙₂ →  𝑙₂ defined by 𝑇(𝑥)  =  (𝑥𝑛 /

2) 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝𝑝𝑖𝑛𝑔,𝑤ℎ𝑒𝑟𝑒 𝑥 =  (𝑥𝑛). 

Solution: 𝐿𝑒𝑡 𝑥, 𝑦 ∈  𝑙₂.  

Then 𝑥 =  (𝑥𝑛) 𝑎𝑛𝑑 𝑦 =  (𝑦𝑛).  

   𝑑(𝑇(𝑥), 𝑇(𝑦)) = [∑(𝑇(𝑥)  −  𝑇(𝑦))²

∞

𝑛=1

]

1/2

                                                             

=  [∑((1/2)𝑥𝑛  −  (1/2)𝑦𝑛)²

∞

𝑛=1

]

1
2

 

                                      = [∑(
1

2
) ²

∞

𝑛=1

(𝑥𝑛 − 𝑦𝑛)²]

1/2

 

                               = (
1

2
) [∑ (𝑥𝑛  − 𝑦𝑛)²

∞

𝑛=1
]1/2 

= (1/2)  d(x, y) 

∴ d(T(x), T(y)) = (1/2) d(x, y) 

∴ T is a contraction mapping. 

 

Example 4 : Let T: [0,1] → [0,1] be a differentiable function. If there is a real number αwith 0 

< α < 1 such that |T′(x)| ≤ α for all x ∈ [0,1], where T′ is the derivative of T, then T is a 

contraction mapping. 

Solution: Let x, y ∈ [0,1] with x < y. 

By Mean Value Theorem, 

𝑇(𝑦)  −  𝑇(𝑥)  =  (𝑦 −  𝑥) 𝑇′(𝑥) 

|𝑇(𝑦)  −  𝑇(𝑥)|  =  |𝑦 −  𝑥| |𝑇′(𝑥)| 

≤  𝛼|𝑦 −  𝑥| 
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∴  𝑑(𝑇(𝑦), 𝑇(𝑥))  ≤  𝛼 𝑑(𝑦, 𝑥) 𝑤ℎ𝑒𝑟𝑒 0 <  𝛼 <  1. 

THEOREM 4.7 : Let T: M → M be a contraction mapping.  Then T is uniformly continuous 

on M. 

Proof: By the definition of a contraction mapping, 

𝑑(𝑇(𝑥), 𝑇(𝑦))  ≤  𝛼 𝑑(𝑥, 𝑦) 𝑤ℎ𝑒𝑟𝑒 𝛼 <  1. 

∴ 𝑑(𝑇(𝑥), 𝑇(𝑦))  <  𝑑(𝑥, 𝑦) 

𝐿𝑒𝑡 𝜀 >  0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. 

Choose 𝛿 =  𝜀. 

𝑑(𝑥, 𝑦)  < 𝛿 ⇒  𝑑(𝑇(𝑥), 𝑇(𝑦))  < 𝜀. 

∴ T is uniformly continuous on M. 

CONTRACTION MAPPING THEOREM 

Statement : Let (M, d) be a complete metric space.Let T: M → M be a contraction mapping. 

Then there exists a unique point x in M such that T(x) = x. 

      (i.e.)   T has exactly one fixed point. 

Proof: Let x₀ be the arbitrary point in M.  Let x₁ = T(x₀), x₂ = T(x₁), …, 𝑥𝑛= T(𝑥𝑛−1).   

We claim that, (𝑥𝑛) is a Cauchy sequence in M.   

Since, T is the contraction mapping, there exists a positive real number α, such that 

0 <  𝛼 <  1 𝑎𝑛𝑑 𝑑(𝑇(𝑥), 𝑇(𝑦))  < 𝛼 𝑑(𝑥, 𝑦).   

∴  𝑑(𝑥𝑛 , 𝑥𝑛+1)  =  𝑑(𝑇(𝑥𝑛−1), 𝑇(𝑥𝑛))   

  ≤  𝛼 𝑑(𝑥𝑛−1, 𝑥𝑛)   

  ≤  𝛼² 𝑑(𝑥𝑛−2, 𝑥𝑛−1)   

  ≤  𝛼³ 𝑑(𝑥𝑛−3, 𝑥𝑛−2)   

  ⋮ 

  ≤  𝛼ⁿ 𝑑(𝑥₀, 𝑥₁).   

 

∴  𝑑(𝑥𝑛, 𝑥𝑛+1) ≤  𝛼ⁿ 𝑑(𝑥₀, 𝑥₁)                …………  (1) 

𝑁𝑜𝑤, 𝑙𝑒𝑡 𝑚, 𝑛 ∈  ℕ 𝑎𝑛𝑑 𝑚 >  𝑛.   

𝑇ℎ𝑒𝑛, 𝑑 (𝑥𝑛, 𝑥𝑚)  ≤  𝑑(𝑥𝑛 , 𝑥𝑛+1)  +  𝑑(𝑥𝑛+1, 𝑥𝑛+2)  +  ⋯ +  𝑑(𝑥𝑚−1, 𝑥𝑚)   

 ≤  𝛼ⁿ 𝑑(𝑥₀, 𝑥₁)  +  𝛼ⁿ⁺¹ 𝑑(𝑥₀, 𝑥₁)  + ⋯ +  𝛼ᵐ⁻¹ 𝑑(𝑥₀, 𝑥₁)  [using (1) 
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  =  𝛼ⁿ 𝑑(𝑥₀, 𝑥₁) [1 +  𝛼 +  𝛼² + ⋯ +  𝛼ᵐ⁻ⁿ⁻¹]   

  <  𝛼ⁿ 𝑑(𝑥0, 𝑥1) [
1

(1 −  𝛼)
]   

∴ 𝑑 (𝑥𝑛 , 𝑥𝑚)   <  (
𝛼ⁿ

1 −  𝛼
)  𝑑(𝑥₀, 𝑥₁) …………… (2) 

Since 0 <  𝛼 <  1, 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝛼ⁿ)  →  0. 

∴ Given ε > 0, there exists a positive integer 𝑛₁ such that |(𝛼ⁿ / (1 −

 𝛼)) 𝑑(𝑥₀, 𝑥₁)| <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥  𝑛₁. 

∴ (2) ⇒ 𝑑 (𝑥𝑛 , 𝑥𝑚) ≤  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ≥  𝑛₁. 

Hence (𝑥𝑛) is a Cauchy sequence in M. 

Since M is complete, there exists x ∈ M such that ((𝑥𝑛)) → x. 

Also, T is continuous. 

Hence, (T(𝑥𝑛)) → T(x). 

∴ T(x) = lim
n→∞

T(𝑥𝑛) 

   = lim
n→∞

𝑥𝑛+1 

   = x. 

Thus, 𝑇(𝑥) = 𝑥. 

Hence, x is the fixed point of T. 

Now, to prove the uniqueness: 

Suppose, there exists y ∈ M such that y ≠ x and T(y) = y. 

Then, d(𝑥, 𝑦) =  𝑑(𝑇(𝑥), 𝑇(𝑦))  

                             ≤  𝛼 𝑑(𝑥, 𝑦) 

⇒  𝑑(𝑥, 𝑦)  −  𝛼 𝑑(𝑥, 𝑦)  ≤  0   

⇒  𝑑(𝑥, 𝑦)(1 −  𝛼)  ≤  0 

𝐶𝑙𝑒𝑎𝑟𝑙𝑦, 𝑑(𝑥, 𝑦)  >  0. 

𝐴𝑙𝑠𝑜, 𝛼 <  1   

∴ 0 < 1 −  𝛼. 

     𝑖. 𝑒. (1 −  𝛼)  >  0. 

∴  𝑑(𝑥, 𝑦)(1 −  𝛼)  >  0, which is a contradiction.   

∴  𝑦 =  𝑥   

Hence, x is the unique fixed point of T. 
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UNIT V 

COMPACTNESS 

Compact Metric Spaces 

Definition :  Let M be a metric a metric space. A family of open sets {Gα} in M is called an open cover 

for M if ⋃Gα = M. 

A subfamily of {Gα} which itself is an open cover is called a subcover. 

A metric space M is said to be compact if every open cover for M has a finite subcover. 

i.e., for each family of open sets {Gα} such that ⋃Gα =M, there exists a finite subfamily {Gα1, Gα2, …, 

Gαn} such that ⋃ 𝐺𝑛
𝑖=1 αi = M. 

Example 1 : R with usual metric is not compact. 

Proof: Consider the family of open intervals {(-n, n): n\N} 

This is a family of open sets in R. 

Clearly ⋃ (−𝑛, 𝑛)
𝑛=1  = R 

{(-n, n)}: nN} is an open cover for R and this open cover has no finite subcover. 

 R is not compact. 

Example 2 : (0,1) with usual metric is not compact. 

Proof: Consider the family of open intervals {(
1

𝑛
,n): n= 2,…} 

Clearly ⋃ (
𝑛=1

1

𝑛
) = (0,1) 

{(
1

𝑛
,1): n= 2,…} is an open cover for (0,1) and this open cover has a finite subcover. 

 Hence (0,1) is not compact. 

Example 3 : [0,1) with usual metric is not compact. 

Proof: Consider the family of open interval {[0, n): n= 1,2, …} 

Clearly ⋃ [0, 𝑛) 
𝑛=1 = [0,) 
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{[0, n): n= 1,2, …} is an open cover for [0,) and this open cover has no finite subcover. 

Hence [0,) is not compact. 

Example 4 : Let M be an infinite set with discrete metric. Then M is not compact. 

Proof: Let 𝑥 ∈ 𝑀. Since M is discrete metric space{𝑥} is open in M. 

Also ⋃𝑥𝑀 {𝑥} = M  

Hence {{𝑥}} such that 𝑥𝑀 is an open cover for M and since M is infinite, this open cover 

has no finite subcover. 

Hence M is not compact. 

Theorem 5.1  : Let M be a metric space. Let AM. Then A is compact iff given  a family of open 

sets {Gα} in M such that ⋃GαA there exists a subfamily {Gα1, Gα2, …, Gαn} such that ⋃ 𝐺𝑛
𝑖=1 αi A. 

Proof: Assume that A be a compact subset of M. 

Let {Gα} be a family of open sets in M such that ⋃GαA. 

To prove: there exist a subfamily {Gα1, Gα2, …, Gαn} such that ⋃ 𝐺𝑛
𝑖=1 αi A. 

 Since ⋃GαA we get (⋃Gα)∩ A = A  

 (⋃Gα∩ A) = A. 

 Also, Gα∩ A is open in A. 

         The family of {Gα∩ A} is open cover for A. 

       But A is compact.  This open cover has a finite subcover (say) {Gα1∩ 𝐴, Gα2∩ 𝐴, …, Gαn∩ 𝐴} 

such that ⋃ (𝐺𝑛
𝑖=1 αi∩ 𝐴) = A 

 (⋃ (𝐺𝑛
𝑖=1 αi)∩ 𝐴 = A 

 ⋃ 𝐺𝑛
𝑖=1 αi  A 

Conversely assume that a family of opensets {Gα} in M such that ⋃GαA there exist a subfamily. 

 To Prove: A is compact. 

 Let {Hα} be an open cover for A. 
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  Each Hα is open in A. 

 Hα = Gα∩ 𝐴 where Gα is open in M. 

 We have, ∪Hα = A 

 ⋃ (Gα∩ 𝐴)= A 

ie, ⋃ Gα∩ 𝐴= A 

⋃GαA 

Hence by hypothesis there exist a finite subfamily. 

{Gα1, Gα2, …, Gαn} such that ⋃ 𝐺𝑛
𝑖=1 αi A. 

(⋃ 𝐺𝑛
𝑖=1 αi )∩ 𝐴 = A 

⋃ (𝐺𝑛
𝑖=1 αi ∩ 𝐴) = A 

⋃ Hα𝑛
𝑖=1 i = A 

 There {Hα1, Hα2, …, Hαn} is a finite subcover of the open cover Hα 

A is compact. 

Theorem 5.2 : Any compact subset A of a metric space M is bounded. 

Proof: Given, A M & A is compact 

To Prove: A is bounded 

Let 𝑥0A  

Consider {B (𝑥0, n): nN} 

⋃ 𝐵(𝑥𝛼
𝑛=1 0, n)A 

{B (𝑥0, n): nN} is an open cover for A. 

But A is compact 

 This open cover has a finite subcover  

{B (𝑥0, n1), B (𝑥0, n1), …., B (𝑥o, nk)} such that ⋃ 𝐵(𝑥𝑘
𝑖=1 0, ni)A 
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Let no = max {n1, n2, …, nk} 

⋃ 𝐵(𝑥𝑘
𝑖=1 0, ni) = B (𝑥0, n0) 

Hence B (𝑥0, n0)A 

We know that B (𝑥0, n0) is bounded set and a subset of a bounded set is bounded. 

    Hence A is bounded. 

Note : The converse of the above theorem is not true. 

ie, A bounded set need not be a compact. 

For example (0,1) is a bounded subset of R , but (0,1) is not compact. 

Theorem 5.3 : Any compact subset A of a metric space (M, d) is closed. 

Proof: Given that A is a compact subset of a metric space M. 

To Prove: A is closed. 

ie, To prove Ac is open 

Let y Ac & Let 𝑥A 

Then 𝑥 ≠ 𝑦 

d (𝑥, 𝑦) = rx> 0  

Also, we have B (𝑥,
 rx 

2
)∩ B (𝑦,

 rx 

2
) = ∅ 

Now consider the collection have {B (𝑥,
 rx 

2
):𝑥A} 

Clearly ⋃ B (𝑥,
 rx 

2
)𝑥∈𝐴 A 

Since A is compact, there exist a finite number of such open ball say B (𝑥1,
𝑟𝑥1

2
  ), B ( 𝑥2, 

𝑟𝑥2

2
), 

…, B (𝑥n, 
𝑟𝑥

2
) such that ⋃ 𝐵(𝑥𝑖

𝑛
𝑖=1 , 𝑟𝑥𝑖/2)A 

Now let Vy = ⋂ 𝐵(𝑦,𝑛
𝑖=1 𝑟𝑥𝑖/2) 

Now let 𝑉𝑦 = i=1nB(xi, rx𝑖/2) 

Clearly, Vy is an open set containing y. 
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Since B (𝑥,
 rx 

2
)∩ B (𝑦,

 rx 

2
)= ∅ we have 𝑉𝑦 ∩ 𝐵(x, 𝑟𝑥𝑖/2) for each i= 1,2, …., n 

 Vy∩ [⋃ 𝐵(x, 𝑟𝑥𝑖/2) 
𝑛
𝑖=1 ]  =  ∅ 

 Vy∩ 𝐴 = ∅ 

 Vy Ac 

⋃ 𝑉𝑦𝑦∈𝐴𝑐  = Ac 

Since each Vy is open we have arbitrary union of open set is open  

⋃ 𝑉𝑦𝑦∈𝐴𝑐  𝑖𝑠 𝑜𝑝𝑒𝑛. 

 Ac is open 

Hence A is closed. 

Note 1 : The converse of the above theorem is not true. 

For example [0,) is a closed subset of R but it is not compact.From theorem (5.2) & (5.3) we 

have any compact subset of a metric space is closed and bounded. 

Theorem 5. 4 : A closed subspace of a compact metric space is compact. 

Proof:Let M be a compact metric space. 

Let A be a non-empty closed subset of M. 

We claim that A is compact. 

Let {Gα: α∈ 𝐼} be a family of open sets in M such that ⋃ 𝐺𝛼𝐼 αA 

Ac∩ [⋃ 𝐺𝛼𝐼 α] = M 

Since A is closed Ac is open 

{Gα: α∈ 𝐼} ∪ Ac is an open cover for M 

Since M is compact, this open cover has a finite subcover Gα1, Gα2, …, Gαn , A
c such that 

⋃ 𝐺𝑛
𝑖=1 αi⋃Ac = M 

⋃ 𝐺𝑛
𝑖=1 αiA 

 A is compact. 

Compact Subsets of R 

Theorem 5.5  (Heine Borel Theorem): Any closed interval [a, b] is a compact subset of R. 

Proof: Let {Gα: α∈ 𝐼} be a family of open sets in M such that ⋃ 𝐺𝛼𝐼 α [a, b] 
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We claim that [a, b] is a compact subset of R. 

Let S = {𝑥: 𝑥 ∈ [𝑎, 𝑏]} and [𝑎, 𝑥] can be covered by finite number of Gα’s. 

Clearly aS and hence S≠ ∅. 

Also, S is bounded above by b. 

Let ‘c’ denote the least upper bound of S. 

Clearly, c[a, b] 

cGα1 for some α1 

Since Gα1 is open, there exist 𝜀 > 0 such that (c-ε, c+ε)Gα1 

Choose 𝑥1[a, b] such that 𝑥1< c and [𝑥1, c] Gα1 

Now, since  𝑥1< c, [a,𝑥1] can be covered by finite number of Gα’s. 

These finite number of Gα’s together with Gα1 covers [a, c] 

By definition of S, cS. 

Now we claim that c=b 

Suppose 𝑐 ≠ 𝑏. Then choose 𝑥2[a, b] such that 𝑥2 >c and [c,𝑥2]Gα1 

As before [𝑎, 𝑥2] can be covered by finite number of Gα’s. 

Hence 𝑥2S 

But 𝑥2> c which is a contradiction since c is the lub of S. 

c=b 

 [a, b] can be covered by finite number of Gα’s. 

[a, b] is a compact subset of R. 

Theorem 5.6 : A subset A of R is a compact iff A is closed and bounded. 

Proof: Assume that A is compact. 

To prove: A is closed and bounded. 

By theorem 5.2, We have A is bounded 

By theorem 5.3, We have A is closed 

Conversely, assume that a subset of R which is closed and bounded. 

To prove: A is compact 

Let A be a subset of R. 

Since A is bounded we can find a closed interval [a, b] such that A[a, b] 

Since A is closed in R, A is closed in [a, b] also. 

Thus, A is closed subset of a compact metric space [a, b]. 

Hence by theorem 5.4, A is compact. 
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EQUIVALENT CHARACTERISATION FOR COMPACTNESS 

Definition : A family  of subset of a set M is said to have the finite intersection property if any finite 

subfamily of  has non-empty intersection. 

Example : In R the family of closed intervals = {[-n, n]:nN} has finite intersection property. 

Theorem 5.7 : A metric space M is compact iff any family of closed sets with finite intersection 

property has non-empty intersection. 

Proof: Assume that M is compact. 

Let {Aα} be a family of closed subsets of M with finite intersection property. 

We claim that ∩ 𝐴α≠ ∅ 

Suppose ∩ 𝐴α= ∅ 

Then (∩ 𝐴α)𝑐 = ∅c 

⋃Aα
c = M 

Also, since each Aα is closed Aα
c is open 

{Aα
c} is an open cover for M. 

Since M is compact this open cover has a finite subcover say A1
c, A2

c, …, An
c 

⋃ 𝐴𝑖
𝑛
𝑖=1

c = M 

(⋂ 𝐴𝑖
𝑛
𝑖=1 ) c = M 

[(⋂ 𝐴𝑖
𝑛
𝑖=1 )c ]c = Mc 

⋂ 𝐴𝑖
𝑛
𝑖=1  = ∅ 

which is the contradiction to the finite intersection property 

∩ 𝐴α≠ ∅ 

 Conversely assume that each family of closed sets in M with finite intersection 

property has non-empty intersection. 

To prove M is compact 

Let Gα such that GαI be an open cover for M 
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⋃ 𝐺∝∝∈𝐼  = M 

(⋃ 𝐺∝∝∈𝐼 ) c = Mc 

⋂ 𝐺∝  ∝∈𝐼
c = ∅ 

Since Gα is open Gα
c is closed for each α. 

 = {Gα
c: αI} is a family of closed sets whose intersection is empty. 

Hence by hypothesis, this family of closed sets does not have the finite intersection property. 

Hence there exist a finite subcollection of  say {G1
c,G2

c, …, Gn
c} such that  

⋂ 𝐺𝑖
𝑛
𝑖=1  = ∅ 

𝑖𝑒. , (⋃ 𝐺𝑖)
𝑛
𝑖=1

c = ∅ 

 ie., ⋃ 𝐺𝑖
𝑛
𝑖=1  = M 

{G1, G2, …, Gn} is a finite subcover of the given open cover. 

Hence M is compact. 

Definition : A metric space M is said to be totally bounded if for every ε>0 there exist a finite number 

of elements 𝑥1 , 𝑥2 , … . , 𝑥𝑛 ∈ 𝑀 such that B (𝑥1, ε) ⋃ B (𝑥2, ε) ⋃, …, ⋃ B(𝑥n, ε) = M. 

 A non- empty subset A of a metric space M is said to be totally bounded if the 

subspace A is a totally bounded metric space. 

Theorem 5.8 : Any compact metric space is totally bounded. 

Proof: Let M be a compact metric space.  

Then {B (𝑥,ε):𝑥M} is an open cover for M. 

Since M is compact this open cover has a finite subcover say B (𝑥1, ε), B (𝑥2, ε), …,  

B (𝑥n, ε) such that ⋃ 𝐵(𝑥𝑖 , 𝜀) = 𝑀𝑛
𝑖=𝑛  

ie., B (𝑥1, ε) ⋃ B (𝑥2, ε) ⋃...… ⋃ B (𝑥n, ε) = M. 

Hence M is totally bounded. 
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Theorem 5.9 : Let A be a subset of a metric space M. If A is totally bounded, then A is bounded. 

Proof: Let A be a totally bounded subset of M. 

Let ε>o be given, then there exist a finite number of points  𝑥1 , 𝑥2 , … . , 𝑥𝑛 ∈ 𝐴  such that B 

(𝑥1, ε) ⋃ B (𝑥2, ε) ⋃........... ⋃ B (𝑥n, ε) = A where B (𝑥𝑖,ε) is an open ball in A. 

Further we know that an open ball is a bounded set. 

Thus, A is the union of a finite number of bounded sets and hence A is bounded. 

Note : The converse of the above theorem is not true. ie., a bounded set need not be totally bounded. 

Example : Let M be an infinite set with discrete metric. 

Clearly M is bounded 

Now B( 𝑥 ,
1

2
) = {𝑥} 

Since M is infinite M cannot be written as the union of a finite number of open balls B( 𝑥 ,
1

2
). 

Then M is not totally bounded. 

Definition : Let 𝑥n be a sequence in a metric space M. Let n1< n2<…<nk<… be an increasing sequence 

of positive integers. Then (𝑥nk) is called the subsequence of ( 𝑥n) 

Theorem 5.10 : A metric space (M, d) is totally bounded iff every sequence in M has the Cauchy’s 

subsequence. 

Proof: Suppose every sequence in M has a Cauchy subsequence. 

We claim that M is totally bounded 

Let ε> 0 be given  

Choose 𝑥1M 

If B (𝑥1, ε)≠  𝑀, choose 𝑥2M-B (𝑥1, ε) so that D (𝑥1,𝑥2)≥ 𝜀 

Now B (𝑥1, ε)⋃ B (𝑥2, ε) = M then the proof is complete. 

If not choose 𝑥3M- [B (𝑥1, ε)⋃ B (𝑥2, ε)] and so on. 

Suppose this process does not stop at a finite stage. 

Then we obtain a sequence𝑥1 , 𝑥2, … . , 𝑥𝑛 , …  such that d (𝑥n, 𝑥m)≥ 𝜀 if n≠ 𝑚 
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Clearly this sequence (𝑥n) cannot have a Cauchy subsequence which is a contradiction. 

Hence the above process stops at a finite stage, and we get a finite set of points   

𝑥1 , 𝑥2 , … . , 𝑥𝑛 ,such that M = B (𝑥1, ε) ⋃ B (𝑥2, ε) ⋃, …, ⋃ B (𝑥n, ε) 

 M is totally bounded. 

Conversely suppose M is totally bounded. 

We claim that every sequence in M has a Cauchy subsequence. 

Let S1 = {𝑥11, 𝑥12, 𝑥13, … 𝑥1n} be a sequence in M. 

If one term of the sequence is infinitely repeated, then S1 contains a constant subsequence 

which is obviously a Cauchy subsequence. 

Hence, we assume that no term of S1 is infinitely repeated so that the range S is infinite. 

Now, Since M is totally bounded M can be covered by a finite number of open balls of radius 

1

2
 

Hence at least one of these balls must contain an infinite number of terms of the sequence S1. 

 S1 contains a subsequence S2 = (𝑥21, 𝑥22, 𝑥23, … 𝑥2n, …) all terms of which lie within an 

open ball of radius 
1

2
 

Similarly, S2 contains a subsequence S3 = {𝑥31, 𝑥32, 𝑥33, … 𝑥3n, …) all terms of which lie 

within an open ball of radius 
1

3
 

We repeat this process of forming successive subsequence and finally we take the diagonal 

sequence. 

S = (𝑥11, 𝑥22, 𝑥33, … 𝑥nn, …) 

We claim that S is a Cauchy subsequence of S1 

If m>n both 𝑥mm and 𝑥nn lies with an open ball of radius 
1

𝑛
 

 d (𝑥mm, 𝑥nn) <
2

𝑛
 

Hence 𝑑 (𝑥mm, 𝑥nn) <ε if n, m >
2

𝜀
 

This shows that S is a Cauchy subsequence of S1 
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Thus, every subsequence in M contains a Cauchy subsequence. 

Corollary : A non-empty subset of totally bounded set is totally bounded. 

Proof: Let A be totally bounded subset of a metric space M. 

Let B be a non-empty subset of A. 

To prove: B is totally bounded. 

It is enough to prove that every sequence has a Cauchy subsequence 

Let (𝑥n) be a sequence in B. 

(𝑥n) is a sequence in A. 

Since A is totally bounded (𝑥n) has a Cauchy subsequence. 

Thus, every sequence in B has a Cauchy subsequence. 

 B is totally bounded. 

Definition : A metric space M is said to be sequentially compact if every sequence in M has a 

convergent sub-sequence. 

Theorem 5.11 : Let be a Cauchy sequence in a metric space. If (𝑥n) has a subsequence (𝑥nk) converging 

to𝑥 , then converges to 𝑥. 

Proof: Let ε>0 be given 

Since (𝑥n) is a Cauchy sequence, there exists a positive integer m1 such that d (𝑥n, 𝑥m) <
1

2
ε for 

all n, m≥m1 …… (1) 

Also, since (𝑥nk)→ 𝑥, there exists a positive integer m2 such that 

 d (𝑥nk,𝑥)<
1

2
ε for all nk≥ 𝑚2        …. (2) 

Let m0 = max {m1, m2} and fix nk≥m0 

Then d (𝑥n,𝑥) ≤ d (𝑥n,𝑥nk) + d (𝑥nk, 𝑥n) 

 <
𝜀

2
 +
𝜀

2
 for all nk≥m0 

                   = ε for all nk≥m0  (𝑥n)→ 𝑥 
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Theorem 5. 12 :  In a metric space M, the following are equivalent. 

(i) M is compact. 

(ii) Any infinite subset of M has a limit point. 

(iii) M is sequentially compact. 

(iv) M is totally bounded and complete. 

Proof: (i)⇒ (ii). 

Assume that M is compact 

To prove: Any finite subset of M has a limit point. 

Let A be an infinite subset of M 

Suppose A has no limit point in M 

Let, 𝑥M 

Since 𝑥  is not a limit point of A there exists an open ball B (𝑥,rx) such that  

 B (𝑥,rx)∩ (A- {𝑥}) = ∅ 

B (𝑥,rx)∩ 𝐴 = {
{𝑥} , 𝑖𝑓 𝑥 ∈ 𝐴

∅  , 𝑖𝑓 𝑥𝐴
 

Now {B (𝑥,r):𝑥M} is an open cover for M 

Also, each B (𝑥,rx) cover atmost one point of the finite set A. 

Hence this open cover cannot have a finite subcover which is a contradiction to (i) 

Hence A has atleast one limit point. 

(ii)⇒(iii) 

Assume that: Any finite subset of M has a limit point. 

To prove: M is sequentially compact. 

Let (𝑥n) be a sequence in M. 

If one term of the sequence is infinitely repeated, then (𝑥n) contains a constant subsequence 

which is convergent. 

Otherwise (𝑥n) has an infinite number of terms. 
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By hypothesis, this infinite set has a limit point, say 𝑥. 

We know that “for any r>0, the open ball B (𝑥,r) contains infinite number of terms of the 

sequence (𝑥n).” 

Now we choose a positive integer n1, such that 𝑥n1B (𝑥, 1) 

Then choose n2> n1 such that 𝑥n2B (𝑥,
1

2
) 

In general, for each positive integer k choose nk such that nk>nk1 and 𝑥nkB (𝑥,
1

𝑘
) 

Clearly, (𝑥nk) is a subsequence of (𝑥n). 

Also, d (𝑥nk, 𝑥) <
1

𝑘
 

(𝑥nk) → 𝑥 

Thus (𝑥nk) is a convergent subsequence of (𝑥n). 

Hence M is sequentially compact. 

(iii)⇒(iv) 

Assume that M is sequentially compact. 

To prove: M is totally bounded and complete. 

By hypothesis, every sequence in M has a convergent subsequence. 

But every convergent sequence is a Cauchy sequence. 

Thus, every sequence in M has a Cauchy sequence. 

By theorem, M is totally bounded. 

Now, we prove that M is complete. 

Let (𝑥n) be a Cauchy sequence in M. 

By hypothesis, (𝑥n) contains a convergent subsequence in (𝑥nk) 

Let (𝑥nk) → 𝑥 (say) 

Now by theorem (𝑥n)→ 𝑥 

 M is complete. 
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(iv) ⇒(i)  

Assume that M is totally bounded and complete. 

To prove: M is compact. 

Suppose M is not compact. 

Then there exists an open cover {Gα} for M which has no finite subcover. 

Let rn = 
1

2𝑛
 

Since, M is totally bounded, M can be covered by a finite number of open balls of radius r1. 

Since M cannot be covered by a finite number of Gα’s atleast one of these open balls, say 

 B (𝑥1, r1) cannot be covered by a finite number ofGα’s. 

Now B (𝑥1, r1) is totally bounded. 

Hence as before we can find 𝑥2 B (𝑥1, r1) such that B (𝑥2, r2) cannot be covered by a finite 

number of Gα’s. 

Proceeding like this we obtain a sequence (𝑥n) in M such that B (𝑥n, rn) cannot be covered by 

a finite number of Gα’s and 𝑥𝑛+1B (𝑥n, rn) for all n. 

Now, d (𝑥n, 𝑥n+p) ≤ d (𝑥n, 𝑥n+1) + d (𝑥n+1, 𝑥n+2) + …. + d (𝑥n+p-1,𝑥n+p) 

< rn + rn+1 + … + rn+p+1 

                               = 
1

2𝑛 
  + 

1

2𝑛+1 
 + … +

1

2𝑛+𝑝−1 
 

                                = 
1

2𝑛 −1
 ( 

1

2
 +

1

22
 + … +

1

2𝑝 
) 

<
1

2𝑛−1 
 

(𝑥n) is a Cauchy sequence in M. 

Since M is complete, there exists 𝑥M such that B (𝑥,ε)Gα …… (1) 

We have (𝑥n)→ 𝑥and (rn) = (
1

2𝑛
)→  0 

Hence, we find a positive integer n1 such that d (𝑥n, 𝑥)<
1

2
ε and rn <

1

2
ε for all n≥n1 
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We claim that B (𝑥n, rn) B (𝑥,ε) 

Let yB (𝑥n, rn)  

 d (y,𝑥n) <rn<
1

2
ε      

Now, d (𝑦, 𝑥) ≤ d (y,𝑥n) +d (𝑥n,𝑥) 

≤
1

2
ε+

1

2
ε  

                        = ε 

𝑦 B (𝑥,ε) 

 B (𝑥n, rn)B (𝑥,ε)Gα [ by (1)] 

Thus B (𝑥n, rn) is covered by the single set Gα which is a contradiction. 

Since B (𝑥, rn) cannot be covered by a finite number of Gα’s. 

Hence M is compact. 

Theorem 5.13 : R with usual metric is complete. 

Proof: Let (𝑥n) be a Cauchy sequence in R. 

Then (𝑥n) is a bounded sequence and hence is contained in a closed interval [a, b]. 

Now [a, b] is compact and hence is complete. 

Hence (𝑥n) converges to some point 𝑥[a, b] 

Thus, every Cauchy sequence (𝑥n) in R converges to some point 𝑥 in R and hence R is 

complete. 

Solved Problems 

Problem 1: Given an example of a closed and bounded subset of l2 which is not compact. 

Solution: 

Consider 0 = (0,0,0, …)l2 

Consider the closed ball B [0,1] 

Clearly, B [0,1] is bounded. 
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Also, B [ 0,1] is closed set. 

We claim that B [0,1] is not compact. 

Consider e1 = (1,0,0, …). 

e2 = (0,1, 0…); en = (0, 0, 0…1, 0 …) 

Now, d (0, en) = 1 and hence enB [0,1] for all n  

Thus (en) is a sequence in B [0,1] 

Also, d (en, em) = √2 if n ≠ 𝑚. 

Hence the sequence (en) does not contain a Cauchy subsequence. 

 B [0,1] is not totally bounded. 

  B [0,1] is not compact. 

Problem 2 : Prove that any totally bounded metric space is separable. 

Solution: Let M be a totally bounded metric space. 

For each natural number n. 

Let An = { 𝑥n1, 𝑥n2, …𝑥nn} be a subset of M such that ⋃ 𝐵(𝑥𝑛𝑖
𝑘
𝑖=1 , 

1

𝑛
) = M …. (1) 

Let A = ⋃ 𝐴𝑛
∞
𝑛=1  

Since each An is finite, A is countable subset of M. 

We claim that A is dense in M. 

Let B (𝑥,ε) be any open ball. 

Choose a natural number n such that 
1

𝑛
<ε 

Now, 𝑥B (𝑥ni, 
1

𝑛
)  for some i [by (1)] 

 d ( 𝑥ni, 𝑥) <
1

𝑛
<ε 

(𝑥ni,)  B (𝑥,ε) 

 B (𝑥,ε) ∩ 𝐴 ≠ ∅ 
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Thus, every open ball in M has non-empty intersection with A. 

Hence by theorem, A is dense in M. 

Thus, A is a countable dense subset of M. 

Hence M is separable. 

Problem 3 : Prove that any bounded sequence in R has a convergent subsequence. 

Solution: Let (𝑥n) be a bounded sequence in R. 

Then there exists a closed interval [a, b] such that 𝑥n[a, b] for all n. 

Thus (𝑥n) is sequence in the compact metric space [a, b]  

Hence by theorem, (𝑥n) has a convergent subsequence. 

 

 

Problem 4 : Prove that the closure of a totally bounded set is totally bounded. 

Solution: Let. A be a totally bounded Subset of a metric space M. 

We claim that  𝐴 ̅is totally bounded. 

We shall show that every sequence in A contains a Cauchy subsequence. 

Let (𝑥n) be a sequence in 𝐴 ̅. 

Let ε>0 be given 

Then since the 𝑥n𝐴 ̅ B(𝑥n,
1

3
ε)∩ 𝐴 ≠ ∅ 

Choose ynB(𝑥n,
1

3
ε)∩ 𝐴 

d (𝑦n, 𝑥n) <
1

3
ε …. (1) 

Now, (𝑦n) is totally bounded (𝑦n) contains a Cauchy subsequence say (𝑦nk). 

Hence there exists a natural number m such that 

d (𝑦ni, 𝑥nj) <
1

3
ε for all ni, nj≥ 𝑚 …. (2) 
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d (𝑥ni, 𝑦nj) < d (𝑥ni, 𝑦n) +d (𝑦ni, 𝑦nj) +d (𝑦nj, 𝑥nj) 

<
1

3
ε + 

1

3
ε +

1

3
ε = ε for all ni, nj [ by (1) and (2)] 

 Hence (𝑥nk) is a Cauchy subsequence of 𝑥n. 

𝐴 ̅is totally bounded. 

Problem 5 : Lot A be a totally bounded subset of R. Prove that𝐴 ̅ is compact. 

Solution: Since A is totally bounded 𝐴 ̅ is also totally bounded. 

Also, since𝐴 ̅ is a closed subset of Rand R is complete 𝐴 ̅.is complete. 

Hence 𝐴 ̅ is to totally bounded and complete. 

𝐴 ̅is compact.  

COMPACTNESS AND CONTINUITY 

Theorem 5.14 : Let f be a continuous mapping from a compact metric space M1to any metric spaceM2. 

Then f (M1) is compact. 

  ie, continuous image of a compact metric space is compact. 

Proof: Without loss of generality, we assume that f (M₁) = M2 

Let {Gα} be a family open set in M2 such that ⋃Gα = M2 

⋃Gα = f (M1) 

f -1⋃Gα = M1 

⋃ f-1 (Gα) = M1 

Also, since f is continuous f-1 (Gα) is open in M1 for each α 

{f-1 (Gα)} is an open cover for M1. 

Since M1 is compact this open cover has a finite subcover say f-1 (Gα1), … f-1 (Gαn) 

f-1 (Gα1) ⋃f-1 (Gα2) ⋃ …. ⋃f-1 (Gαn) = M1 

f-1(⋃ 𝐺𝛼𝑖)
𝑛
𝑖=1 = M1   

⋃ 𝐺𝛼𝑖
𝑛
𝑖=1  = f (M1) = M2 
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Gα1, Gα2, …. Gαn is an open cover for M2 

Thus, the given open cover {Gα} for M2 has a finite subcover. 

  M2 is compact. 

Corollary 1 : Let f be a continuous map from a compact metric space M1 into any metric M2. Then f 

(M1) is closed and bounded. 

Proof: f (M1) is compact and hence is closed and bounded. 

Corollary 2 : Any continuous real valued function f defined on a compact metric space is bounded 

and attains its bounds. 

Proof: Let M be a compact metric space. 

Let f: M →R be a continuous real valued function. 

Then f (M) be a compact subset of R. 

 f (M) is closed and bounded subset of R 

Since f (M) is bounded f is a bounded function. 

Now, let a = lub of  f (M) & 

               b = glb of f (M) 

By definition of lub & glb a, b 𝑓 (𝑀)̅̅ ̅̅ ̅̅ ̅̅  but f (M) is closed. 

Hence f (M) = 𝑓 (𝑀)̅̅ ̅̅ ̅̅ ̅̅  

 a, b  f (M) 

 There exists 𝑥, 𝑦M such that f (𝑥) = a & f (𝑦) = b 

Hence f attains its bounds. 

Note : Corollary 2 is not true if M is not compact. 

 The function f: (0, 1)→R defined by f (𝑥) = 
1

𝑥
 is continuous but not bounded. 

Theorem 5.15 : Any continuous mapping f defined on a compact metric space (M1, d1) into any other 

metric space (M2, d2) is uniformly continuous on M1. 

Proof: Let ε>0 be given 
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Let 𝑥M1 

Since f is continuous at 𝑥,there exist 𝛿𝑥>0 such that d1 (𝑦, 𝑥) <𝛿𝑥 

d2 ((f (𝑦), f (𝑥)) <
𝜀

2
 …. (1) 

{B (𝑥, 𝛿𝑥
2
): 𝑥M1} is an open cover for M1. 

Since M1 is compact this open cover has a finite subcover say B (𝑥, 𝛿𝑥1
2

), …, B (𝑥, 𝛿𝑥𝑛
2

) 

Let 𝛿 = min {𝛿𝑥1
2

 , 𝛿𝑥2
2

, …, 𝛿𝑥𝑛
2

} 

We claim that d1 (p, q) <d2 ((f(𝑝), f(𝑞))<ε 

Let pB (𝑥i, 𝛿𝑥𝑖
2

) for some 1≤ 𝑖 ≤ 𝑛 

d1 (p,𝑥i) <𝛿𝑥𝑖
2

 

d2 (f (p), f (𝑥i) <
𝜀

2
 …. (2) [from (1)] 

Now, d1 (q, 𝑥i)≤ d1 (p, q) + d1 (p, 𝑥i) 

<𝛿 + 𝛿𝑥𝑖
2

 

<𝛿𝑥𝑖
2

+ 𝛿𝑥𝑖
2

 

                           = 𝛿𝑥𝑖 

Thus d1 (q, 𝑥i) <𝛿𝑥𝑖 

d2 (f (q), f (𝑥i) <
𝜀

2
   …. (3) [from (1)] 

Now, d2 ((f(𝑝), f(𝑞))  ≤ d2 (f (p), f (𝑥i) + d2 (f (𝑥i), f (q)) 

<
𝜀

2
    +  

𝜀

2
 

                                      = ε 

Thus, d1 (p, q) < d2 (f (p), f (q)) <ε 

 f is uniformly continuous on M1. 
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Theorem 5.16 : Let f be a 1-1 continuous function from a compact metric space M1 onto any metric 

space M2. Thenf -1is continuous on M2. Hence f is a homeomorphism from M1 onto M2. 

Proof: We shall show that f-1is continuous. 

By proving that F is closed set in M1(f-1)-1 (F) = f(F) is a closed set in M2. 

 Let F be a closed set in M1 

SinceM1is compact 

F is compact 

Since f is continuous, f (F) is a compact subset of M2. 

 f (F) is closed subset of M2. 

f-1 is continuous on M2. 

Solved Problems 

Problem 1: Prove that the range of a continuous real valued function f on a compact connected metric 

space M must be either a single point or a closed and bounded interval. 

Solution: Let f:M→R be a continuous function. 

 If f is a constant function, then the range of f is a single point. 

Suppose f is not a constant function, then the range of f contains more than one point. 

Since M is connected 

f (M) is connected subset of R 

f(M) is an interval in R. 

Also, since Mis compact and fis continuous. 

f (M) is a compact subset of R. 

f (M) is a closed and bounded subset of R. 

Thus f (M) is a closed and bounded interval of R. 

Problem 2 : Prove that any continuous function f: [a,b] R is not onto. 

Solution: Suppose f is onto 
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Then f [a, b] =R 

Now, since [a, b] is compact and fis continuous. 

 f [a,b] = R is compact, whichis a contradiction. 

f is not onto. 

EXERCISES 

1. Give an example of an open cover which has no finite subcover for the following 

subsets of R. 

(i) (5,6)      (ii) (5,∞)       (iii) [5,∞)       (iv) [7,9]. 

2. Show that every finite metric space is compact. 

3. Give an example of a connected subset of R which is not compact. 

4. If A and B are two compact subsets of a metric space M, prove that AUB is also 

compact. 

5. Determine which of the following subsets of R are compact. 

(i) Z (ii) Q (iii) [1,2] (iv) (3,4) 
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