

MANONMANIAM SUNDARANAR UNIVERSITY

TIRUNELVELI-627 012

DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

III B.Sc. MATHEMATICS

SEMESTER V

REAL ANALYSIS

Sub. Code: JMMA52

Prepared by

Dr. Leena Nelson S N

Associate Professor & Head, Department of Mathematics Women's Christian College, Nagercoil - 1.

REAL ANALYSIS (JMMA52)

UNIT	DETAILS
I	Metric spaces : Definition and Examples – Bounded sets – Open
	ball – open sets – Subspaces – Interior of a set.
II	Closed sets – Closure – Limit point – Dense set.
	Complete metric space : Completeness - Cantor's Intersection
	Theorem – Baire's Category theorem.
III	Continuity : Continuity – Homeomorphism – Uniform Continuity
	– Discontinuous functions on R.
IV	Connectedness: Definition and Examples – Connected subsets of
	R - Connectedness and continuity - Contraction mapping
	theorem.
V	Compactness: Compact metric spaces – Compact Subsets of R –
	Equivalent characterizations for compactness – Compactness and
	Continuity.

Recommended Text

S. Arumugam and A. Thangapandi Issac, Modern Analysis, New Gamma Publishing House, Palayamkottai, 2015

UNIT I

METRIC SPACES

Definition: A **metric space** is a non-empty set M together with a function $d: M \times M \to R$ satisfying the following conditions:

- (i) $d(x, y) \ge 0$ for all $x, y \in M$
- (ii) d(x, y) = 0 iff x = y
- (iii) d(x, y) = d(y, x) for all $x, y \in M$
- (iv) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in M$ (triangle inequality)

d is called a metric or distance function and d(x,y) is called the distance between x and y.

Note: The metric space M with the metric d is denoted by (M, d) or simply by M when the underlying metric d is clear from the context.

Example 1: In R we defind d(x,y) = |x-y|. Then d is a metric on R. This is called the usual metric on R.

Proof : Clearly $d(x, y) = |x - y| \ge 0$.

Also,
$$d(x, y) = 0 \Leftrightarrow |x - y| = 0 \Leftrightarrow x = y$$
.

$$d(x, y) = |x - y| = |y - x| = d(y, x).$$

Now, let $x, y, z \in R$.

Then,
$$d(x, z) = |x - z| = |x - y + y - z| \le |x - y| + |y - z| = d(x, y) + d(y, z)$$
.

$$\therefore d(x, z) \le d(x, y) + d(y, z).$$

Hence, d is a metric on M.

Note: Whenever we consider R as a metric space the underlying metric is taken to b the usual metric unless otherwise stated.

Example 2: In C, we define d(z, w) = |z - w|. Then d is a metric on C. This is called the usual metric on C.

Note: If the complex number z = x + iy is identified with the point (x,y) of the two dimensional Euclidean plane then the above distance formula takes the form $d(z,w) = \sqrt{(x-u)^2 + (y-v)^2}$ where z = x + iy and w = u + iv. This is nothing but the usual distance between the points (x,y) and (u,v) in the plane.

Example 3: On any non-empty set M we define d as follows:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Then d is a metric on M. This is called the discrete metric on M.

Proof : Clearly, $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$.

Also,
$$d(x,y) = d(y,x) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

$$d(x, y) = d(y, x)$$
 for all $x, y \in M$.

Now let $x, y, z \in M$

Case (i) x = z

Then d(x, z) = 0.

Also, $d(x, y) + d(y, z) \ge 0$.

$$\therefore d(x,z) \le d(x,y) + d(y,z).$$

Case (ii) $x \neq z$

Then d(x, z) = 1.

Also, since x, z are distinct, y cannot be equal to both x and z.

Hence, either $y \neq x$ or $y \neq z$.

$$d(x, y) + d(y, z) \ge 1.$$

$$d(x,z) \le d(x,y) + d(y,z).$$

Thus $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in M$.

Hence, d is a metric on M.

Example 4: In R^n we define $d(x,y) = [\sum_{i=1}^n (x_i - y_i)^2]^{1/2}$ where $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$. Then d is a metric on R^n . This is called the usual metric on R^n .

Proof: $d(x, y) = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{1/2} \ge 0.$

$$d(x,y) = 0 \Leftrightarrow \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{1/2} = 0$$

 $\Leftrightarrow (x_i - y_i)^2 = 0$ for all i=1,2,....n.

$$\Leftrightarrow x_i = y_i \text{ for all } i = 1, 2, \dots, n.$$

$$\Leftrightarrow (x_1, x_2, \dots, x_n) = (y_1, y_2, \dots \dots y_n)$$
$$\Leftrightarrow x = y.$$

Also,
$$d(x,y) = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{1/2} = \left[\sum_{i=1}^{n} (y_i - x_i)^2\right]^{1/2} = d(y,x).$$

To prove the triangle inequality, take $a_i = x_i - y_i$, $b_i = y_i - z_i$ and p = 2 in Minkowski's

inequality we get,
$$\left[\sum_{i=1}^{n}(x_i-z_i)^2\right]^{\frac{1}{2}} \leq \left[\sum_{i=1}^{n}(x_i-y_i)^2\right]^{\frac{1}{2}} + \left[\sum_{i=1}^{n}(y_i-x_i)^2\right]^{\frac{1}{2}}$$

i.e.,
$$d(x,z) \le d(x,y) + d(y,z)$$
.

 \therefore d is a metric on \mathbb{R}^n .

Note: R^n with usual metric is called the n-dimensional Euclidean space.

Example 5: Consider R^n . Let p > 1. we define $d(x,y) = [\sum_{i=1}^n (x_i - y_i)^p]^{1/p}$ where x = 1 (x_1, x_2, \dots, x_n) and $y = (y_1, y_2, \dots, y_n)$. Then d is a metric on \mathbb{R}^n .

The proof is similar to that of example 4.

Example 6: Let $x, y \in R^2$. Then $x = (x_1, x_2)$ and $y = (y_1, y_2)$ where $x_1, x_2, y_1, y_2 \in R$. We define $d(x, y) = |x_1 - y_1| + |x_2 - y_2|$. Then d is a metric on R^2 .

Proof:
$$d(x, y) = |x_1 - y_1| + |x_2 - y_2| \ge 0$$
.

$$d(x,y) = 0 \Leftrightarrow |x_1 - y_1| + |x_2 - y_2| = 0$$

$$\Leftrightarrow |x_1 - y_1| = 0 \text{ and } |x_2 - y_2| = 0$$

$$\Leftrightarrow x_1 = y_1 \text{ and } x_2 = y_2$$

$$\Leftrightarrow (x_1, x_2) = (y_1, y_2)$$

$$\Leftrightarrow x = y.$$

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

$$= |y_1 - x_1| + |y_2 - x_2|$$

$$= d(y, x).$$

Now, let $x, y, z \in \mathbb{R}^2$.

$$d(x,z) = |x_1 - z_1| + |x_2 - z_2|$$

$$= |x_1 - y_1 + y_1 - z_1| + |x_2 - y_2 + y_2 - z_2|$$

$$\leq \{|x_1 - y_1| + |y_1 - z_1|\} + \{|x_2 - y_2| + |y_2 - z_2|\}$$

$$= \{|x_1 - y_1| + |x_2 - y_2|\} + \{|y_1 - z_1| + |y_2 - z_2|\}$$

$$= d(x,y) + d(y,z).$$

$$\therefore d(x,z) \leq d(x,y) + d(y,z).$$

Hence d is a metric on \mathbb{R}^n .

Example 8: Let c_1, c_2, \dots, c_n be given fixed positive real numbers. Let $x, y \in \mathbb{R}^n$ where $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$. We define $d(x, y) = \sum_{i=1}^n c_i |x_i - y_i|$. Then d is a metric on \mathbb{R}^n .

Note: A non-empty set M can be provided with different metrics. For example, R^n has been provided with five different metrics as seen from examples 4 to 8.

Example 9: Let $p \ge 1$. Let l_p denote the set of all sequences (x_n) such that $\sum_{1}^{\infty} |x_n|^p$ is convergent. Define $d(x,y) = [\sum_{n=1}^{\infty} |x_n - y_n|^p]^{1/p}$ where $x = (x_n)$ and $y = (y_n)$. Then d is a metric on l_p .

Proof: Let $a, b \in l_p$.

First we prove that d(a, b) is a real number.

By Minkowski's inequality we have,

Since $a, b \in l_p$ the right hand side of (1) has a finite limit as $n \to \infty$.

 $\therefore \left[\sum_{i=1}^{n} (a_i + b_i)^p\right]^{\frac{1}{p}}$ is a convergent series.

Similarly we can prove that $\left[\sum_{i=1}^{n}(a_i-b_i)^p\right]^{\frac{1}{p}}$ is also convergent series and hence d(a,b) is a real number.

Now, taking limit as $n \to \infty$ in (1) we get

$$\left[\sum_{i=1}^{\infty} (a_i + b_i)^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{\infty} |a_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{\infty} |b_i|^p\right]^{\frac{1}{p}} \dots (2)$$

Obviously $d(x, y) \ge 0$.

$$d(x, y) = 0 iff x = y$$
$$d(x, y) = d(y, x).$$

Now, let $x, y, z \in l_p$.

Taking $a_i = x_i - y_i$ and $b_i = y_i - z_i$ in (2) we get

$$\left[\sum_{i=1}^{\infty} (x_i - y_i + y_i - z_i)^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{\infty} |x_i - y_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{\infty} |y_i - z_i|^p\right]^{\frac{1}{p}}$$

$$\left[\sum_{i=1}^{\infty} (x_i - z_i)^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{\infty} |x_i - y_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{\infty} |y_i - z_i|^p\right]^{\frac{1}{p}}$$

$$\therefore d(x, z) \le d(x, y) + d(y, z).$$

Hence, d is a metric on l_p .

Note: In particular, l_2 is a metric space with the metric defined by $d(x,y) = [\sum_{n=1}^{\infty} |x_n - y_n|^2]^{1/2}$.

Example 10: Let M be the set of all bounded real valued functions defined on a non-empty set E. Define $d(f,g) = \sup\{|f(x) - g(x)|/x \in E\}$. Then d is a metric on M.

Proof: $d(f, g) = \sup\{|f(x) - g(x)| : x \in E\} \ge 0.$

Also,
$$d(f,g) = 0 \Leftrightarrow \sup\{|f(x) - g(x)| : x \in E\} = 0$$

 $\Leftrightarrow |f(x) - g(x)| = 0 \text{ for all } x \in E$
 $\Leftrightarrow f(x) = g(x) \text{ for all } x \in E$
 $\Leftrightarrow f = g.$

Also,
$$d(f,g) = \sup\{|f(x) - g(x)|\}$$

= $\sup\{|g(x) - f(x)|\}$
= $d(g, f)$.

Now, let $f, g, h \in M$.

We have,
$$|f(x) - h(x)| \le |f(x) - g(x)| + |g(x) - h(x)|$$

 $\sup |f(x) - h(x)| \le \sup |f(x) - g(x)| + \sup |g(x) - h(x)|$
 $\therefore d(f,h) < d(f,g) + d(g,h).$

Hence, d is a metric on M.

Example 11: Let M be the set of all sequences in R. Let $x, y \in M$ and let $x = (x_n)$ and $y = (x_n)$ (y_n) . Define $d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n (1 + |x_n - y_n|)}$. Then d is a metric on M.

Proof: Let $x, y \in M$. First we prove that d(x,y) is a real number ≥ 0 .

We have
$$\frac{|x_n - y_n|}{2^n (1 + |x_n - y_n|)} \le \frac{1}{2^n}$$
 for all n .

Also, $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is a convergent series.

 $\therefore \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n (1 + |x_n - y_n|)} \text{ is a convergent series. [By Comparison test]}$

d(x, y) is a real number and $d(x, y) \ge 0$.

$$d(x,y) = 0 \Leftrightarrow \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n (1 + |x_n - y_n|)} = 0$$

$$\Leftrightarrow |x_n - y_n| = 0 \text{ for all } n$$

$$\Leftrightarrow x_n = y_n \text{ for all } n$$

$$\Leftrightarrow x = y.$$

Also,
$$d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n (1 + |x_n - y_n|)}$$

$$= \sum_{n=1}^{\infty} \frac{|y_n - x_n|}{2^n (1 + |y_n - x_n|)}$$

$$= d(y, x).$$

Now, let $x, y, z \in M$. Then

$$\frac{|x_n - z_n|}{(1 + |x_n - z_n|)} = 1 - \frac{1}{(1 + |x_n - z_n|)}$$

$$\leq 1 - \frac{1}{(1 + |x_n - y_n| + |y_n - z_n|)}$$

$$= \frac{1 + |x_n - y_n| + |y_n - z_n| - 1}{(1 + |x_n - y_n| + |y_n - z_n|)}$$

$$= \frac{|x_n - y_n| + |y_n - z_n|}{(1 + |x_n - y_n| + |y_n - z_n|)}$$

$$= \frac{|x_n - y_n|}{(1 + |x_n - y_n|)} + \frac{|y_n - z_n|}{(1 + |x_n - y_n| + |y_n - z_n|)}$$

$$\leq \frac{|x_n - y_n|}{(1 + |x_n - y_n|)} + \frac{|y_n - z_n|}{(1 + |y_n - z_n|)}$$

Multiplying both sides of this inequality by $\frac{1}{2^n}$ and taking the limit from n=1 to ∞ we

$$\gcd \textstyle \sum_{n=1}^{\infty} \frac{|x_n - z_n|}{2^n (1 + |x_n - z_n|)} \leq \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{(1 + |x_n - y_n|)} + \sum_{n=1}^{\infty} \frac{|y_n - z_n|}{(1 + |y_n - z_n|)}.$$

$$\therefore d(x,z) \le d(x,y) + d(y,z).$$

Hence, d is a metric on M.

Example 12: Let l^{∞} denote the set of all bounded sequence of real numbers. let $x = (x_n)$ and $y=(y_n)\in l^\infty$. Define d on l^∞ as $d(x,y)=lub|x_n-y_n|$. Then d is a metric on l^∞ .

Proof : $d(x, y) = lub|x_n - y_n| \ge 0$.

$$d(x,y) = 0 \Leftrightarrow lub|x_n - y_n| = 0$$

$$\Leftrightarrow |x_n - y_n| = 0 \text{ for } 1 \leq n < \infty$$

$$\Leftrightarrow x_n = y_n \text{ for } 1 \leq n < \infty$$

$$\Leftrightarrow (x_n) = (y_n) \Leftrightarrow x = y.$$

$$d(x,y) = lub|x_n - y_n|$$

$$= lub|y_n - x_n|$$

$$= d(y,x).$$

Now, let $z = (z_n)$.

Now,
$$|x_n - z_n| \le |x_n - y_n| + |y_n - z_n|$$

$$\le lub|x_n - y_n| + lub|y_n - z_n|$$

$$= d(x, y) + d(y, z).$$

$$\therefore lub|x_n - z_n| \le d(x, y) + d(y, z)$$

$$\therefore d(x, z) \le d(x, y) + d(y, z).$$

Hence, d is a metric on l^{∞} .

Solved Problems:

Problem 1: Let d_1 and d_2 be two metrics on M. Define $d(x,y) = d_1(x,y) + d_2(x,y)$. Prove that d is a metric on M.

Solution: Since, d_1 and d_2 are two metrics on M, we have

$$d_1(x,y) \ge 0 \text{ for all } x,y \in M$$

$$d_1(x,y) = 0 \text{ iff } x = y$$

$$d_1(x,y) = d_1(y,x) \text{ for all } x,y \in M$$

$$d_1(x,z) \le d_1(x,y) + d_1(y,z) \text{ for all } x,y,z \in M$$
and
$$d_2(x,y) \ge 0 \text{ for all } x,y \in M$$

$$d_2(x,y) = 0 \text{ iff } x = y$$

$$d_2(x,y) = d_2(y,x) \text{ for all } x,y \in M$$

$$d_2(x,z) \le d_2(x,y) + d_2(y,z) \text{ for all } x,y,z \in M$$

$$d(x,y) = d_1(x,y) + d_2(x,y) \ge 0$$

$$d(x,y) = 0 \Leftrightarrow d_1(x,y) + d_2(x,y) = 0$$

$$\Leftrightarrow d_1(x,y) = 0 \text{ and } d_2(x,y) = 0$$

$$\Leftrightarrow x = y.$$

$$d(x,y) = d_1(x,y) + d_2(y,x)$$

$$= d_1(y,x) + d_2(y,x)$$

$$= d_1(y,x).$$

Now, let $x, y, z \in M$.

$$\begin{aligned} d_1(x,z) & \leq d_1(x,y) + d_1(y,z) \& \ d_2(x,z) \leq d_2(x,y) + d_2(y,z) \\ & Adding \ these \ two \ we \ get \\ d_1(x,z) + d_2(x,z) & \leq \left(d_1(x,y) + \ d_2(x,y)\right) + \left(d_1(y,z) + d_2(y,z)\right) \\ & i.e., d(x,z) \leq d(x,y) + d(y,z). \\ & \therefore d \ \text{is a metric on M.} \end{aligned}$$

Problem 2: Determine whether d(x, y) defined on R by $d(x, y) = (x - y)^2$ is a metric or not. **Solution**: Let $x, y \in R$.

$$d(x,y) = (x - y)^{2} \ge 0.$$

$$d(x,y) = 0 \Leftrightarrow (x - y)^{2} = 0$$

$$\Leftrightarrow x = y.$$

$$d(x,y) = (x - y)^2 = (y - x)^2 = d(y,x).$$

But triangle inequality does not hold.

Take x = -5, y = -4 and z = 4.

Then $d(x, y) = (-5 + 4)^2 = 1$

$$d(y,z) = (-4-4)^2 = 64$$

$$d(x,z) = (4+5)^2 = 81$$

Here, d(x, z) > d(x, y) + d(y, z).

Hence triangle inequality does not hold.

 \therefore d is not a metric on R.

Problem 3: If d is a metric on M, is d^2 is a metric on M?

Solution: Consider d(x, y) defined on R by d(x, y) = |x - y|.

From Example 1, we have d is a metric on R.

But,
$$d^2(x, y) = |x - y|^2 = (x - y)^2$$
.

But d^2 is not a metric. [From Problem 2].

Problem 4 : If d is a metric on M, prove that \sqrt{d} is a metric on M.

Solution: Let $x, y, z \in M$.

Since, $d(x, y) \ge 0$, we have $\sqrt{d(x, y)} \ge 0$.

Also,
$$\sqrt{d(x,y)} = \sqrt{d(y,x)}$$

Now, $d(x, z) \le d(x, y) + d(y, z)$

Hence, \sqrt{d} is a metric on M.

Problem 5: Let (M, d) be a metric space. Define $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Prove that d_1 is a metric on M.

Solution:
$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)} \ge 0$$
 [since, $d(x,y) \ge 0$]
$$d_1(x,y) = 0 \Leftrightarrow \frac{d(x,y)}{1+d(x,y)} = 0$$

$$\Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y. [\because d \text{ is a metric}]$$

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

$$= \frac{d(y,x)}{1 + d(y,x)}$$
$$= d_1(y,x)$$

Now, let $x, y, z \in M$.

Then
$$d_1(x,z) = \frac{d(x,z)}{1+d(x,z)}$$

$$= 1 - \frac{1}{1+d(x,y)}$$

$$\leq 1 - \frac{1}{1+d(x,y)+d(y,z)}$$

$$= \frac{1+d(x,y)+d(y,z)-1}{1+d(x,y)+d(y,z)}$$

$$= \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)}$$

$$= \frac{d(x,y)}{1+d(x,y)+d(y,z)} + \frac{d(y,z)}{1+d(x,y)+d(y,z)}$$

$$\leq \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)}$$

$$= d_1(x,y) + d_1(y,z).$$

Thus, $d_1(x, z) \le d_1(x, y) + d_1(y, z)$.

Hence, d_1 is a metric on M.

Problem 6 : Let (M,d) be a metric space. Define $d_1(x,y) = \min\{1, d(x,y)\}$. Prove that d_1 is a metric on M.

Solution :
$$d_1(x, y) = \min\{1, d(x, y)\} \ge 0$$
.

Also,
$$d_1(x, y) = \min\{1, d(x, y)\}$$

= $\min\{1, d(y, x)\}$
= $d(y, x)$.

Now, let $x, y, z \in M$.

Then $d_1(x, z) = \min\{1, d(x, z)\} \le 1$.

To prove : $d_1(x, z) \le d_1(x, y) + d_1(y, z)$.

If $d_1(x, y) = 1$ or $d_1(y, z) = 1$ the inequality is obvious.

Let
$$d_1(x, y) < 1$$
 and $d_1(y, z) < 1$.

Then,
$$d_1(x, y) + d_1(y, z) = \min\{1, d(x, y)\} + \min\{1, d(y, z)\}$$

$$= d(x, y) + d(y, z)$$

$$\geq d(x, z)$$

$$\geq \min\{1, d(x, z)\}$$

$$= d_1(x, z).$$

Thus,
$$d_1(x, z) \le d_1(x, y) + d_1(x, z)$$
.
 $\therefore d_1$ is a metric on M.

Problem 7 : Let M be a non-empty set. Let $d: M \times M \to R$ be a function such that

$$(i)d(x,y) = 0 \text{ iff } x = y.$$

$$(ii)d(x,y) \le d(x,z) + d(y,z)$$
 for all $x,y,z \in M$.

Prove that d is a metric on M.

Solution: Put y = x in (ii).

We have, $d(x, x) \le d(x, z) + d(x, z)$.

$$0 \le 2d(x, z)$$
 by (i)

$$\therefore d(x,z) \ge 0.$$

Now to prove d(x, y) = d(y, x).

Put z = x in (ii) w get $d(x, y) \le d(x, x) + d(y, x)$.

i.e.,
$$d(x, y) \le d(y, x)$$
 using (i)

Since this is true for all $x, y \in M$ we have $d(y, x) \le d(x, y)$.

Hence, d(x, y) = d(y, x).

Now (ii) can be written as $d(x, y) \le d(x, z) + d(z, y)$ which is the triangle inequality.

d is a metric on M.

Problem 8: If (M_1, d_1) , (M_2, d_2) , ..., (M_n, d_n) are metric spaces then $M_1 \times M_2 \times ... \times M_n$ is a metric space with metric d defined by $d(x, y) = \sum_{i=1}^n d_i(x_i, y_i)$ where $x = (x_1, x_2, ..., x_n)$; $y = (y_1, y_2, ..., y_n)$.

Solution: $d(x, y) = \sum_{i=1}^{n} d_i(x_i, y_i) \ge 0$.

Also,
$$d(x,y) = 0 \Leftrightarrow \sum_{i=1}^{n} d_i(x_i, y_i) = 0$$

 $\Leftrightarrow d_i(x_i, y_i) = 0$ for all $i = 1, 2, \dots, n$.
 $\Leftrightarrow x_i = y_i$ for all $i = 1, 2, \dots, n$.
 $\Leftrightarrow (x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n)$
 $\Leftrightarrow x = y$.

Also,
$$d(x, y) = \sum_{i=1}^{n} d_i(x_i, y_i)$$

$$= \sum_{i=1}^{n} d_i(y_i, x_i)$$
$$= d(y, x).$$

Now, let $x, y, z \in M$.

$$d(x,z) = \sum_{i=1}^{n} d_i(x_i, z_i)$$

$$\leq \sum_{i=1}^{n} [d_i(x_i, y_i) + d_i(y_i, z_i)]$$

$$= \sum_{i=1}^{n} d_i(x_i, y_i) + \sum_{i=1}^{n} d_i(y_i, z_i)$$

$$= d(x, y) + d(y, z).$$

$$\therefore d(x, z) \leq d(x, y) + d(y, z).$$

Hence, d is a metric on M.

Problem 9: In a metric space (M, d) prove that $|d(x, z) - d(y, z)| \le d(x, y)$ for all $x, y, z \in$ Μ.

Solution: let $x, y, z \in M$.

We have $d(x, z) \le d(x, y) + d(y, z)$.

$$d(x, z) - d(y, z) \le d(x, y).$$
(i)

Interchanging x and y in (i) we get

$$d(y,z) - d(x,z) \le d(y,x) = d(x,y)$$

 $\therefore d(y,z) - d(x,z) \le d(x,y).$ (ii)

From (i) and (ii) we get $|d(x, z) - d(y, z)| \le d(x, y)$.

BOUNDED SETS IN A METRIC SPACE

Definition: Let (M,d) be a metric space. We say that a subset A of M is **bounded** if there exista a positive real numbr k such that $d(x, y) \le k$ for all $x, y \in A$.

Example 1: Any finite subset A of a metric space (M,d) is bounded.

Proof: Let A be any finite subset of M.

If $A = \emptyset$, then A is obviously bounded.

Let $A \neq \emptyset$. Then $\{d(x,y)/x, y \in A\}$ is a finite set of real numbers.

Let $k = \max\{d(x, y)/x, y \in A\}$.

Clearly, $d(x, y) \le k$ for all $x, y \in A$.

∴ A is bounded.

Example 2: [0, 1] is a bounded subset of R with usual metric since $d(x, y) \le 1$ for all $x, y \in [0,1]$.

More generally any finite interval and any subset of R which is contained in a finite interval are bounded subsets of R.

Example 3: $(0, \infty)$ is an unbounded subset of R.

Example 4: If we consider R with discrete metric, then $(0, \infty)$ is bounded subsets of R, since $d(x, y) \le 1$ for all $x, y \in (0, \infty)$.

More generally, any subset of a discrete metric space M is a bounded subset of M.

Example 5: In
$$l_2$$
 let $e_1 = (1,0,0,...,0,...)$, $e_2 = (0,1,0,....,0,....)$, $e_3 = (0,0,1,0,...,0.....)$, Let $A = \{e_1, e_2, e_2,, e_n,\}$. Then A is a bounded subset of l_2 .

Proof:
$$d(e_n, e_m) = \begin{cases} \sqrt{2} & \text{if } n \neq m \\ 0 & \text{if } n = m. \end{cases}$$

$$d(e_n, e_m) = \sqrt{2}$$
 for all $e_n, e_m \in A$.

 \therefore A is a bounded set in l_2 .

Example 6 : Let (M,d) be a metric space. Define $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$.

We know that (M, d_1) is also a metric space.

Also,
$$d_1(x, y) < 1$$
 for all $x, y \in M$.

Hence, (M, d_1) is a bounded metric space.

Definition: Let (M, d) be a metric space. Let $A \subseteq M$. Then the diameter of A, denoted by d(A), is defined by $d(A) = l.u.b.\{d(x,y)/x,y \in A\}$.

Note 1: A non-empty set A is a bounded set iff d(A) is finite.

Note 2 : Let $A, B \subseteq M$. Then $A \subseteq B \Rightarrow d(A) \leq d(B)$.

Example 1: The diameter of any non-empty subset in a discrete metric space is 1.

Example 2: In R the diameter of any interval is equal to the length of the interval. For example, the diameter of [0, 1] is 1.

Example 3: In any metric space $d(\emptyset) = -\infty$.

OPEN BALL (OPEN SPHERE) IN A METRIC SPACE

Definition: Let (M,d) be a metric space. Let $\alpha \in M$ and r be a positive real number. Then the **open ball** or the open sphere with centre a and radius r denoted by $B_d(a,r)$ is the subset of M given by $B_d(a, r) = \{x \in M / d(a, x) < r\}.$

When the metric d under consideration is clear we write B(a,r) instead of $B_d(a,r)$.

Note 1: B(a,r) is always non-empty since it contains at least its centre a.

Note 2: B(a, r) is a bounded set.

For, let
$$x, y \in B(a, r)$$
.
 $x \in B(a, r) \Rightarrow d(a, x) < r$
 $y \in B(a, r) \Rightarrow d(a, y) < r$
 $\therefore d(x, y) \le d(x, a) + d(a, y) < r + r = 2r$.

Thus, d(x, y) < 2r.

Hence, B(a,r) is bounded.

Example 1: Consider R with usual metric. Let $a \in R$.

Then
$$B(a,r) = \{x \in R / d(a,x) < r\}$$

 $= \{x \in R / |x-a| < r\}$
 $= \{x \in R / -r < x - a < r\}$
 $= \{x \in R / a - r < x < a + r\}$
 $= (a - r, a + r).$

Example 2 : Consider C with usual metric. Let $a \in C$.

Then
$$B(a,r) = \{z \in C / d(a,z) < r\}$$

= $\{z \in C / |z - a| < r\}$

This is the interior of the circle with centre a and radius r.

Example 3: In \mathbb{R}^2 with usual metric B(a, r) is the interior of the circle with centre a and radius r.

Example 4 : Let d be the discrete metric on M. Then $B(a,r) = \begin{cases} M & \text{if } r > 1 \\ \{a\} & \text{if } r < 1 \end{cases}$

Proof: We have,
$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Let $a \in M$. Let r be any positive real number.

Case (i) Let r > 1. Then, $B(a, r) = \{x \in M/d(a, x) < r\}$.

Clearly every point $x \in M$ such that d(a, x) < r.

Hence, B(a,r) = M.

Case (ii) Let $r \leq 1$.

In this case for any point $x \neq a$, $d(a, x) = 1 \geq r$.

Hence, $x \notin B(a, r)$ so that $B(a, r) = \{a\}$.

$$\therefore B(a,r) = \begin{cases} M & \text{if } r > 1 \\ \{a\} & \text{if } r \leq 1 \end{cases}$$

Example 5: Consider M = [0,1] with usual metric d(x,y) = |x-y|.

Here,
$$B\left(0, \frac{1}{2}\right) = \left\{x \in [0, 1] / d(0, x) < \frac{1}{2}\right\}$$

$$= \left\{x \in [0, 1] / |x| < \frac{1}{2}\right\}$$

$$= \left[0, \frac{1}{2}\right).$$

Example 6: Consider R^2 with the metric d given by

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

$$Then B((0,0), 1) = \{(x, y) \in R^2 / |x - 0| + |y - 0| < 1\}$$

$$= \{(x, y) \in R^2 / |x| + |y| < 1\}$$

This is the interior of the square bounded by the four lines x + y = 1; -x + y = 1; -x - y = 1y = 1; x - y = 1. i. e., x + y = 1; -x + y = 1; x + y = -1; x - y = 1.

Example 7: Consider R^2 with the metric d given by

$$d((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2| + |y_1 - y_2|\}$$

$$Then \ B((0,0), 1) = \{(x, y) \in R^2 / \max\{|x - 0| + |y - 0|\} < 1\}$$

$$= \{(x, y) \in R^2 / \max\{|x| + |y|\} < 1\}$$

This is the interior of the square with vertices (1,1), (-1,1), (-1,-1) and (1,-1).

Exercises

- In R with usual metric find
 - (i) B(-1,1)(ii) B(1,1)
- 2. In [0,1] with usual metric find
 - (i) B(1/2,1)(ii) B(0,1/4)(iii) B(1,1/2) (iv($B(1/4, \frac{1}{4})$

(iii) B(1/2, 1)

OPEN SETS

Definition: Let (M,d) be a metric space. Let A be a subset of M. Then A is said to be **open** in M if for every $x \in A$ there exists a positive real number r such that $B(x,r) \subseteq A$.

Example 1: In R with ususal metric (0, 1) is an open set.

Proof: Let $x \in (0,1)$.

Choose
$$r = \min\{x - 0, 1 - x\} = \min\{x, 1 - x\}$$
.
Clearly, $r > 0$ and $B(x, r) = (x - r, x + r) \subseteq (0, 1)$.
 $\therefore (0, 1)$ is open.

Example 2: In R with usual metric [0, 1) is not open since no open ball with centre 0 is containd in [0,1).

Example 3: Consider M=[0,2) with usual metric. Let $A = [0,1) \subseteq M$. Then A is open in M. Proof: Let $x \in [0,1)$

If
$$x = 0$$
 then $B\left(0, \frac{1}{2}\right) = \left[0, \frac{1}{2}\right) \subseteq A$.
If $x \neq 0$ choose $r = \min\{x, 1 - x\}$.
Clearly $r > 0$ and $B(x, r) = (x - r, x + r) \subseteq [0, 1)$.
 $\therefore A$ is open in M.

Example 4: Any open interval (a,b) is an open set in R with usual metric.

Proof: Let
$$x \in (a, b)$$
.
Choose $r = \min\{x - a, b - x\}$
Clearly, $r > 0$ and $B(x, r) \subseteq (a, b)$.
 $\therefore (a, b)$ is an open set.

Note: Similarly we can prove that $(-\infty, a)$ and (a, ∞) are open sets.

Example 5: In R with usual metric, the set $\{0\}$ is not an open set since, any open ball with centre 0 is not contained in $\{0\}$.

Example 6: In R with usual metric any finite non-empty subset A of R is not an open set.

Proof: Any open ball in R is a bounded open interval which is an infinite subset of R.

Hence, it cannot be contained in the finite subset A.

Hence, A is not open in R.

Example 7 : Q is not open in R.

Proof: Let $x \in Q$.

Then, for any r > 0 the interval (x - r, x + r) contains both rational and irrational numbers.

 \therefore (x-r,x+r) is not a subset of Q.

Hence, Q is not open in R.

Example 8: The set of irrational numbers I is not open in R.

Proof: Let $x \in I$.

Then, for any r > 0 the interval (x - r, x + r) contains both rational and irrational numbers.

 \therefore (x-r,x+r) is not a subset of I.

Hence, I is not open in R.

Example 9 : Z is not open in R.

Proof: Let $x \in Z$.

Then, for any r > 0 the interval (x - r, x + r) is not a subset of Z.

Hence, Z is not open in R.

Example 10 : In a discrete metric space M every subset A is open.

Proof: If $A = \emptyset$, trivially A is open.

Let $A \neq \emptyset$.

Let $x \in A$.

Then $B\left(x, \frac{1}{2}\right) = \{x\} \subseteq A$.

Hence, A is open in M.

Theorem 1.1: In any metric space M, (i) \emptyset is open.

(ii) M is open.

Proof: (i) Trivially Ø is an open set.

(ii) Let $x \in M$. Clearly for any r > 0, $B(x, r) \subseteq M$. Hence, M is an open set.

Theorem 1.2: In any metric space (M,d) each open ball is an open set.

Proof: Let B(a, r) be an open ball in M.

Let $x \in B(a,r)$

Then d(a, x) < r.

0 < r - d(a, x). i. e., r - d(a, x) > 0.

Let
$$r_1 = r - d(a, x)$$
.

We claim that $B(x, r_1) \subseteq B(a, r)$.

Let
$$y \in B(x, r_1)$$

$$\therefore d(x,y) < r_1 = r - d(a,x).$$

$$d(x,y) + d(a,x) < r.$$

.....(1)

Now,
$$d(a, y) \le d(a, x) + d(x, y) < r [From (1)]$$

$$d(a, y) < r$$
.

$$\therefore y \in B(a,r).$$

Hence, $B(x, r_1) \subseteq B(a, r)$.

B(a,r) is an open set.

Theorem 1.3: In any metric space the union of family of open sets is open.

Proof: Let (M, d) be a metric space,

Let $\{A_i/i \in I\}$ be a family of open sets in M.

Let
$$A = \bigcup_{i \in I} A_i$$
.

If $A = \emptyset$ then A is open.

 \therefore Let $A \neq \emptyset$.

Let $x \in A$. Then $x \in A_i$ for some $i \in I$.

Since A_i is open, there exists an open ball B(x, r) such that $B(x, r) \subseteq A_i$.

$$B(x,r) \subseteq A$$
.

Hence A is open.

Theorem 1.4: In any metric space the intersection of a finite number of open sets is open.

Proof: Let (M, d) be a metric space.

Let A_1, A_2, \dots, A_n be open sets in M.

Let
$$A = A_1 \cup A_2 \cup \dots \cup A_n$$
.

If $A = \emptyset$ then A is open.

 \therefore Let $A \neq \emptyset$.

Let $x \in A$. Then $x \in A_i$ for each $i = 1, 2, \dots, n$.

Since A_i is open, there is a positive real number r_i such that $B(x, r_i) \subseteq A_i$(1)

Let
$$r = \min\{r_1, r_2, \dots, r_n\}$$

Obviously r is a positive real number and $B(x,r) \subseteq B(x,r_i)$ for all $i = 1,2,\ldots,n$.

Hence
$$B(x,r) \subseteq A_i$$
 for all $i = 1,2,...,n$ [from (1)].

$$\therefore B(x,r) \subseteq \bigcap_{i=1}^{n} A_{i}.$$

$$\therefore B(x,r) \subseteq A.$$

 \therefore A is open.

Note: The intersection of an infinite number of open sts in a metric space need not be open.

For example, Consider R with usual metric.

Let
$$A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$
.

Then A_n is open in R for all n.

But $\bigcap_{n=1}^{\infty} A_n = \{0\}$ which is not open in R.

Characterization of open sets in terms of open balls

Theorem 1.5: Let (M, d) be a metric space. Let A be any non-empty subset of M. Then A is open iff A can be expressed as th union of family of open balls.

Proof: Let A be any non-empty subset of M.

Assume that A is open.

To prove, A can be expressed as the union of family of open balls.

Let $x \in A$.

Since, A is an open set there exists an open ball $B(x, r_x)$ such that $B(x, r_x) \subseteq A$.

Clearly, $\bigcup_{x \in A} B(x, r_x) = A$.

Thus A is the union of family of open balls.

Conversely, Assume that A can be expressed as the union of family of open balls.

To prove, A is open.

By Theorem 1.2, each open ball is an open set.

By Theorem 1.3, In any metric space, the union of family of open sets is open.

Hence, A is open.

SOLVED PROBLEMS

Problem 1 : Let (M, d) be a metric space. Let x,y be two distinct points in M. Prove that there exists two disjoint open balls with centres x and y respectively.

Solution : Since, $x \neq y$, d(x, y) = r > 0.

Consider the open balls $B\left(x, \frac{1}{4}r\right)$ and $B\left(y, \frac{1}{4}r\right)$.

We claim that $B\left(x, \frac{1}{4}r\right) \cap B\left(y, \frac{1}{4}r\right) = \emptyset$.

Suppose
$$B\left(x, \frac{1}{4}r\right) \cap B\left(y, \frac{1}{4}r\right) \neq \emptyset$$
.

Let
$$z \in B\left(x, \frac{1}{4}r\right) \cap B\left(y, \frac{1}{4}r\right)$$

$$\therefore z \in B\left(x, \frac{1}{4}r\right) \text{ and } z \in B\left(y, \frac{1}{4}r\right)$$

$$\therefore d(x,z) < \frac{1}{4}r \text{ and } d(y,z) < \frac{1}{4}r.$$

Now,
$$d(x,y) \le d(x,z) + d(z,y) < \frac{1}{4}r + \frac{1}{4}r = \frac{1}{2}r$$
.

which is a contradiction.

Hence,
$$B\left(x, \frac{1}{4}r\right) \cap B\left(y, \frac{1}{4}r\right) = \emptyset$$
.

Problem 2 : Let (M, d) be a metric space. Let $x \in M$. Show that $\{x\}^c$ is open.

Solution: Let $y \in \{x\}^c$. Then $y \neq x$.

$$\therefore d(x,y) = r > 0.$$

Clearly
$$B\left(y, \frac{1}{2}r\right) \subseteq \{x\}^c$$
.

$$\therefore \{x\}^c$$
 is open.

Problem 3 : Let (M,d) be a metric space. Show that every subset of M is open iff $\{x\}$ is open for all $x \in M$.

Solution: Suppose every subset of M is open.

Then obviously $\{x\}$ is open for all $x \in M$.

Conversely, assume that $\{x\}$ is open for all $x \in M$.

To prove A is open.

Let A be any subset of M.

If $A = \emptyset$ then A is open.

$$\therefore \text{ Let } A \neq \emptyset. \text{ Then } A = \bigcup_{x \in A} \{x\}.$$

By hypothesis, $\{x\}$ is open.

Since arbitrary union of open sets is open, A is open.

Problem 4: Let $A = \{(a_n)/(a_n) \in l_2 \text{ and } [\sum_{n=1}^{\infty} a_n^2]^{\frac{1}{2}} < 1 \}$. Prove that A is open in l_2 .

Solution : We first prove that $A = B(\mathbf{0}, 1)$ where $\mathbf{0} = (0, 0, \dots)$.

Let $x \in A$. Hence, $\sum_{n=1}^{\infty} x_n^2 < 1$.

$$\therefore d(x, \mathbf{0}) = \left[\sum_{n=1}^{\infty} (x_n - 0)^2\right]^{1/2} = \left[\sum_{n=1}^{\infty} (x_n)^2\right]^{1/2} < 1.$$

Thus, $d(x, \mathbf{0}) < 1$.

Now, let $y \in B(0,1)$

From (1) and (2) we get A = B(0, 1).

Now the open ball B(0, 1) is an open set.

Hence, A is an open set.

Problem 5: Prove that any open subset of R can be expressed as the union of a countable number of mutually disjoint open intervals.

Solution : Let A be an open subset of R.

Let $x \in A$.

Then there exists a positive real number r such that $B(x,r) = (x-r,x+r) \subseteq A$.

Thus there exists an open interval I such that $x \in I$ and $I \subseteq A$.

Let I_x denote the largest open interval such that $x \in I$ and $I_x \subseteq A$.

Clearly, $\bigcup_{x \in A} I_x = A$.

We claim that $I_x = I_y$ or $I_x \cap I_y = \emptyset$.

Suppose $I_x \cap I_y \neq \emptyset$.

Then $I_x \cup I_y$ is an open interval contained in A.

But I_x is the largest open interval such that $x \in I_x$ and $I_x \subseteq A$.

$$: I_x \cup I_y = I_x$$
 so that $I_y \subseteq I_x$.

Similarly, $I_x \subseteq I_v$.

 $I_x = I_y$. Thus the intervals I_x are mutually disjoint.

We claim that the set $F = \{I_x / x \in A\}$ is countable.

Now for each $I_x \in F$ choose a rational number $r_x \in I_x$.

Since the intervals I_x are mutually disjoint $I_x \neq I_y \Rightarrow r_x \neq r_y$.

- $f: F \to Q$ defined by $f(I_x) = r_x$ is 1-1.
 - \therefore F is equivalent to a subset of Q which is countable.
 - \therefore F is countable.

EQUIVALENT METRICS

Definition: Let d and ρ be the two metrics on M. Then the metrics d and ρ are said to be equivalent if the open sets of (M, ρ) are the open sets of (M, d) and conversely.

Problem 6: Let (M, d) be a metric space. Define $\rho(x, y) = 2d(x, y)$. Then d and ρ are equivalent metrics.

Solution: We know that ρ is a metric on M.

We first prove that $B_d(a,r) = B_\rho(a,2r)$.

Let $x \in B_d(a, r)$

$$\therefore d(a,x) < r.$$

$$\therefore 2d(a,x) < 2r.$$

$$\rho(x,y) < 2r$$
.

Hence. $x \in B_{\rho}(a, 2r)$.

$$\therefore B_d(a,r) \subseteq B_o(a,2r) \quad \dots \dots \dots \dots (1)$$

Now, let $x \in B_{\rho}(a, 2r)$

$$\rho(a,x) < 2r$$
.

$$\therefore \frac{1}{2} \rho(a, x) < r.$$

$$d(a, x) < r$$
.

$$x \in B_d(a,r)$$

$$\therefore B_o(a, 2r) \subseteq B_d(a, r) \dots \dots \dots (2)$$

$$\therefore By\ (1) and\ (2) we\ get, B_d(a,r) = B_\rho(a,2r) \ldots \ldots \ldots (3)$$

Now, let G be any open subset in (M,d). Let $a \in G$.

Hence, there exists r > 0 such that $B_d(a, r) \subseteq G$.

$$\therefore B_{\rho}(a,2r) \subseteq G\left(using\left(3\right)\right)$$

 \therefore G is open in (M, ρ) .

Conversely, suppose G is open in (M, ρ) .

Let $a \in G$.

Hence, there exists r > 0 such that $B_{\rho}(a, r) \subseteq G$.

$$\therefore B_d\left(a, \frac{1}{2}r\right) \subseteq G\left(using\left(3\right)\right)$$

- \therefore G is open in (M, d).
- \therefore d and ρ are equivalent metrics.

Problem 7: Let (M, d) be a metric space. Define $\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Prove that d and ρ are equivalent metrics on M.

Solution: We know that ρ is a metric on M.

We first prove that $B_{\rho}(a,r) = B_d\left(a,\frac{r}{1-r}\right)$ provided 0 < r < 1.

Let $x \in B_{\rho}(a, r)$

Hence. $x \in B_d\left(a, \frac{r}{1-r}\right)$.

$$\therefore B_{\rho}(a,r) \subseteq B_d\left(a, \frac{r}{1-r}\right) \dots \dots \dots \dots (1)$$

Now, let $x \in B_d\left(a, \frac{r}{1-r}\right)$

$$\therefore B_d\left(a, \frac{r}{1-r}\right) \subseteq B_\rho(a,r) \dots \dots \dots (2)$$

$$\therefore By (1) and (2) we get, B_\rho(a,r) = B_d\left(a, \frac{r}{1-r}\right) \dots \dots \dots (3)$$

Now, let G be any open subset in (M, ρ) . Let $\alpha \in G$.

Hence, there exists r > 0 such that $B_{\rho}(a, r) \subseteq G$.

Without loss of generality we may assume that r < 1.

$$\therefore B_d\left(a, \frac{r}{1-r}\right) \subseteq G\left(using\left(3\right)\right)$$

 \therefore G is open in (M, d).

Conversely, suppose G is open in (M, d).

Let $a \in G$.

Hence, there exists r > 0 such that $B_d(a, r) \subseteq G$.

$$\therefore B_{\rho}\left(a, \frac{r}{1-r}\right) \subseteq G\left(using\left(3\right)\right)$$

- \therefore G is open in (M, ρ) .
- \therefore d and ρ are equivalent metrics.

Problem 8: If d and ρ are metrics on M and if there exists k > 1 such that $\frac{1}{k}\rho(x,y) \le$ $d(x,y) \le k\rho(x,y)$ for all $x,y \in M$. Prove that d and ρ are equivalent metrics.

Solution: Suppose that there exists k > 1 such that $\frac{1}{k}\rho(x,y) \le d(x,y) \le k\rho(x,y)$ (1) for all $x, y \in M$.

Let G be an open set in (M, d).

Let $a \in G$.

Hence, there exists r > 0 such that $B_d(a, r) \subseteq G$(2)

We now claim that $B_{\rho}\left(a, \frac{r}{k}\right) \subseteq G$

Let
$$x \in B_{\rho}\left(a, \frac{r}{k}\right)$$

$$\therefore \rho(a,x) < \frac{r}{k}.$$

$$\therefore k \rho(a, x) < r$$
.

$$d(a,x) < r$$
. [using 1]

$$\therefore x \in B_d(a,r) \subseteq G [By (2)]$$

$$x \in G$$
.

Hence,
$$B_{\rho}\left(a, \frac{r}{k}\right) \subseteq G$$
.

 \therefore *G* is open in (M, ρ) .

Conversely, let G be open in (M, ρ) .

Let $a \in G$.

Hence, there exists r > 0 such that $B_{\rho}(a, r) \subseteq G \dots \dots (3)$

We now claim that $B_d\left(a, \frac{r}{k}\right) \subseteq G$

Let
$$x \in B_d\left(a, \frac{r}{k}\right)$$

$$\therefore d(a,x) < \frac{r}{k}$$

Hence,
$$B_d\left(a, \frac{r}{k}\right) \subseteq G$$
.

 \therefore G is open in (M, d).

Hence d and ρ are equivalent metrics on M.

Exercises

1. Determine which of the following subsets of R are open in R with usual metric.

(i) R (ii) N (iii) Z (iv) Q (v)
$$(1,2)U(3,4)$$

(vi) $(0,\infty)$ (vii) $(-\infty,a)$

2. Prove that the complement of any finite subset of a metric space M is open.

SUBSPACE

Definition: Let (M, d) be a metric space. Let M_1 be a non-empty subset of M. Then M_1 is also a metric space with the same metric d. We say that (M_1, d) is a subspace of (M, d).

Note: If M_1 is a subspace of M a set which is open in M_1 need not be open in M.

For example, if M=R with usual metric and $M_1 = [0,1]$ then $\left[0,\frac{1}{2}\right)$ is open in M_1 but not open in M.

Theorem 1.6: Let M be a metric space and M_1 a subspace of M. Let $A_1 \subseteq M_1$. Then A_1 is open in M_1 iff there exists an open set A in M such that $A_1 = A \cap M_1$.

Proof: Let M_1 be a subspace of M.

We denote $B_1(a, r)$ the open ball in M_1 with centre a and radius r.

Then
$$B_1(a,r) = \{x \in M_1 / d(a,x) < r\}$$
.

Also,
$$B(a, r) = \{x \in M / d(a, x) < r\}$$
.

Hence,
$$B_1(a,r) = B(a,r) \cap M_1$$
.(1)

Now, let A_1 be an open set in M_1 .

$$A_1 = \bigcup_{x \in A_1} B_1(x, r(x)) \quad \text{by theorem 1.5}$$

$$= \bigcup_{x \in A_1} [B(x, r(x)) \cap M_1] \quad \text{by (1)}$$

$$= [\bigcup_{x \in A_1} B(x, r(x))] \quad \cap M_1$$

$$= A \cap M_1 \text{ where } A = \bigcup_{x \in A_1} B(x, r(x)) \text{ which is open in M.}$$

Conversely, let $A_1 = A \cap M_1$ where A is open in M.

We claim that A_1 is open in M_1 .

Let $x \in A_1$.

$$x \in A \text{ and } x \in M_1.$$

Since A is open in M there exists a positive real number r such that $B(x,r) \subseteq A$.

$$\therefore M_1 \cap B(x,r) \subseteq M_1 \cap A.$$
i.e., $B_1(x,r) \subseteq A_1$ [using (1)]

Hence, A_1 is open in M_1 .

Example 1 : Let
$$M = R$$
 and $M_1 = [0,1]$. Let $A_1 = \left[0, \frac{1}{2}\right)$.
Now, $A_1 = \left[0, \frac{1}{2}\right) = \left(-\frac{1}{2}, \frac{1}{2}\right) \cap [0,1]$ and $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is open in R.
 $\therefore \left[0, \frac{1}{2}\right)$ is open in $[0,1]$.

Example 2: Let M = R and $M_1 = [1,2] \cup [3,4]$.

Let
$$A_1 = [1,2]$$
. Then $A_1 = [1,2] = \left(\frac{1}{2}, \frac{5}{2}\right) \cap M_1$.

 \therefore [1,2] is open in M_1 .

Similarly, [3,4] is open in M_1 .

Hence, $[1,2] \cup [3,4]$ is open in M_1 .

Problem 1: Let M_1 be a subspace of a metric space M. Prove that every open set A_1 of M_1 is open in M iff M_1 itself is open in M.

Solution : Suppose every open set A_1 of M_1 is open in M.

Now, M_1 is open in M_1 .

Hence, M_1 is open in M.

Conversely, suppose M_1 is open in M.

Let A_1 be an open set in M_1 .

Then by theorem 1.6, there exists an open set A in M such that $A_1 = A \cap M_1$.

Since A and M_1 are open in M_1 we get A_1 is open in M.

INTERIOR OF A SET

Definition: Let (M, d) be a metric space. Let $A \subseteq M$. Let $x \in A$. Then x is said to be an interior point of A if there exists a positive real number r such that $B(x,r) \subseteq A$.

The set of all interior points of A is called the interior of A and it is denoted by IntA.

Note : $IntA \subseteq A$.

Example 1 : Consider R with usual metric.

- (a) Let A = [0,1]. Clearly 0 and 1 aree not interior points of A and any point $x \in (0,1)$ is an interior point of A. Hence, IntA = (0,1).
- (b) Let A = Q. Let $x \in Q$.

Then for any positive real number r, B(x,r) = (x-r,x+r) contains irrational numbers.

- B(x,r) is not a subset of Q.
- \therefore x is not an interior point of Q.

Since $x \in Q$ is arbitrary, no point of Q is an interior point.

$$\therefore IntO = \emptyset.$$

- (c) Let A be a finite subset of R. Then $IntA = \emptyset$.
- (d) Let $A = \{0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\}$. Then $Int A = \emptyset$.

Example 2 : Consider R with discrete metric.

Let
$$A = [0,1]$$
. Let $x \in [0,1]$.

Then
$$B\left(x, \frac{1}{2}\right) = \{x\} \subseteq A$$
.

 \therefore x is an interior point of A.

Since, $x \in [0,1]$ is arbitrary, IntA=A.

Example 3: In a discrete metric space M, IntA=A for any subset A of M.

Basic properties of interior

Theorem 1.7: Let (M,d) be a metric space. Let $A,B \subseteq M$.

- (i) A is open iff A = IntA. In particular, $Int\emptyset = \emptyset$ and IntM = M.
- (ii) IntA=Union of all open sets contained in A.
- IntA is an open subset of A and if B is any other open set contained in A then $B \subseteq$ (iii) IntA. i.e., IntA is the largest open set contained in A.
- $A \subseteq B \Rightarrow IntA \subseteq IntB$. (iv)
- $Int(A \cap B) = IntA \cap IntB.$ (v)
- $Int(A \cup B) \supseteq IntA \cup IntB$. (vi)

Proof: (i) From the definition of open set, A is open iff A = IntA.

Also, $Int\emptyset = \emptyset$ and IntM = M.

(ii) Let $G = \bigcup \{B \mid B \text{ is an open subset of } A\}$.

To prove IntA=G.

Let $x \in IntA$.

 \therefore There exists a positive real number r such that $B(x,r) \subseteq A$.

Thus B(x,r) is an open set contained in A.

$$B(x,r) \subseteq G$$
.

$$x \in G$$
.

Now, let $x \in G$.

Then there exists an open set B such that $x \in B$ and $B \subseteq A$.

Now, since B is open and $x \in B$ there exists a positive real number r such that $B(x,r) \subseteq$ $B \subseteq A$.

 $\therefore x$ is an interior point of A.

Hence,
$$G \subseteq IntA \dots \dots \dots \dots (2)$$

From (1) and (2), we get G=IntA.

(iii) Since union of any collection of open sets is open, (ii)⇒IntA is an open set.

Trivially $IntA \subseteq A$.

Now, let B be any open set contained in A.

Then
$$B \subseteq G = IntA$$
 [From (ii)]

: IntA is the largest open set contained in A.

(iv) Let $x \in IntA$.

 \therefore There exists a positive real number r such that $B(x,r) \subseteq A$.

But $A \subseteq B$.

Hence, $B(x,r) \subseteq B$.

 $x \in Int B$

Hence, $IntA \subseteq IntB$.

We have, $A \cap B \subseteq A$. (v)

$$\therefore Int(A \cap B) \subseteq IntA [From (iv)]$$

Also, $A \cap B \subseteq B$.

$$: Int(A \cap B) \subseteq IntB [From (iv)]$$

$$: Int(A \cap B) \subseteq IntA \cap IntB \dots \dots \dots (1)$$

Now, $IntA \subseteq A$; $IntB \subseteq B$.

Hence, $IntA \cap IntB \subseteq A \cap B$.

Thus, $IntA \cap IntB$ is an open set contained in $A \cap B$.

But $Int(A \cap B)$ is the largest open set contained in $A \cap B$.

$$: IntA \cap IntB \subseteq Int(A \cap B) \dots \dots (2)$$

From (1) and (2) we get $Int(A \cap B) = IntA \cap IntB$.

We have, $A \subseteq A \cup B$. (vi)

$$\therefore IntA \subseteq Int(A \cup B) [From (iv)]$$

Also,
$$B \subseteq A \cup B$$
. $\therefore IntB \subseteq Int(A \cup B) [From (iv)]$

$$: IntA \cup IntB \subseteq Int(A \cup B).$$

i.e.,
$$Int(A \cup B) \supseteq IntA \cup IntB$$
.

Note : $Int(A \cup B)$ need not be equal to $IntA \cup IntB$.

For example, in R with usual metric, consider A = (0,2] & B = (2,3).

Then
$$A \cup B = (0,3)$$
.

Clearly,
$$Int(A \cup B) = (0,3)$$
.

But
$$IntA = (0,2) \& IntB = (2,3)$$

$$IntA \cup IntB = (0,2) \cup (2,3) = (0,3) - \{2\}.$$

$$\therefore Int(A \cup B) \neq IntA \cup IntB.$$

UNIT II

CLOSED SETS

Definition: Let (M,d) be a metric space. Let $A \subseteq M$. Then A is said to be closed in M if the complement of A is open in M.

Example 1: In R with usual metric any closed interval [a,b] is a closed set.

Proof: $[a, b]^c = R - [a, b] = (-\infty, a) \cup (b, \infty)$.

Also $(-\infty, a)$ and (b, ∞) are open in R.

i.e., $[a,b]^c$ is open in R.

Hence, [a,b] is closed in R.

Example 2: In R with usual metric [a,b) is neither open nor closed.

Proof: [a,b) is not open in R since a is not an interior point of [a,b).

Now, $[a,b)^c = R - [a,b) = (-\infty,a) \cup [b,\infty)$ and this set is not open since b is not an interior point.

 \therefore [a, b) is not closed in R.

Hence, [a,b) is neither open nor closed in R.

Example 3: In R with usual metric (a,b] is neither open not closed.

Proof is similar to example 2.

Example 4: Z is closed.

Proof: $Z^c = \bigcup_{n=1}^{\infty} (n, n+1)$.

The open interval (n,n+1) is open and the union of open sets is open.

 $\therefore Z^c$ is open.

Hence, Z is closed.

Example 5: Q is not closed in R.

Proof: Q^c =the set of irrational which is not open in R.

 \therefore Q is not closed in R.

Example 6: The set of irrational numbers is not closed in R.

Proof is similar to that of Example 5.

Example 7: In R with usual metric every singleton set is closed.

Proof: Let $a \in R$.

Then $\{a\}^c = R - \{a\} = (-\infty, a) \cup (a, \infty)$.

Since $(-\infty, a)$ and (a, ∞) are both open sets, $(-\infty, a) \cup (a, \infty)$ is open.

Thus, $\{a\}^c$ is open.

Hence, {a} is closed.

Example 8: Every subset of a discrete metric space is closed.

Proof: Let (M,d) be a discrete metric space.

Let $A \subseteq M$.

Since, every subset of a discrete metric spac is open. A^c is open.

∴ A is closed.

Definition: Let (M, d) be a metric space. Let $a \in M$. Let r be any positive real number. Then the closed ball or the closed sphere with centre a and radius r denoted by $B_a[a,r]$, is defined by $B_d[a, r] = \{x \in M/d(a, x) \le r\}.$

When the metric d under consideration is clear we write B[a, r] instead of $B_d[a, r]$.

Example 1 : In R with usual metric B[a, r] = [a - r, a + r].

Example 2: In R^2 with usual metric let $a = (a_1, a_2) \in R^2$.

Then
$$B[a,r] = \{(x,y) \in R^2/d((a_1,a_2)), (x,y)) \le r\}$$

= $\{(x,y) \in R^2/(x-a_1)^2 + (y-a_2)^2 \le r\}$

Hence, B[a, r] is the set of all points which lie within and on the circumference of the circle with centre a and radius r.

Theorem 2.1: In any metric space every closed ball is a closed set.

Proof: Let (M,d) be a metric space.

Let B[a, r] be an open ball in M.

Case (i) Suppose $B[a, r]^c = \emptyset$

 $B[a,r]^c$ is open and hence B[a,r] is closed.

Case (ii) Suppose $B[a, r]^c \neq \emptyset$

Let $x \in B[a,r]^c$

 $x \notin B[a,r]$

Then d(a, x) > r.

$$d(a,x)-r>0$$
.

Let $r_1 = d(a, x) - r$.

We claim that $B(x, r_1) \subseteq B[a, r]^c$.

Let
$$y \in B(x, r_1)$$

$$\therefore d(x,y) < r_1 = d(a,x) - r.$$

$$\therefore d(x,y) + r < d(a,x).$$

$$\therefore d(a, x) > d(x, y) + r \qquad \dots (1)$$

Now, $d(a, x) \le d(a, y) + d(y, x)$

$$\therefore y \notin B(a,r).$$

Hence, $y \in B[a, r]^c$

Hence, $B(x, r_1) \subseteq B[a, r]^c$.

 $B[a,r]^c$ is open in M.

B[a,r] is closed in M.

Theorem 2.2: In any metric space M, (i) Ø is closed, (ii) M is closed.

Proof: Since $M^c = \emptyset$ is open, M is closed.

Similarly, $\emptyset^c = M$ is open and hence \emptyset is closed.

Theorem 2.3: In any metric space arbitrary intersection of closed sets is closed.

Proof: Let (M, d) be a metric space,

Let $\{A_i/i \in I\}$ be a family of closed sets in M.

Let
$$A = \bigcap_{i \in I} A_i$$
.

We claim that A is closed.

We have,
$$(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} A_i^c$$
 (By De – Morgan's Law)

Since A_i is closed, A_i^c is open.

$$\therefore \bigcup_{i \in I} A_i^c$$
 is open.

$$\therefore (\bigcap_{i \in I} A_i)^c$$
 is open.

Hence $\bigcap_{i \in I} A_i$ is closed.

Hence A is closed.

Theorem 2.4: In any metric space the union of a finite number of closed sets is closed.

Proof: Let (M, d) be a metric space.

Let A_1, A_2, \dots, A_n be closed sets in M.

By De-Morgan's law,
$$(A_1 \cup A_2 \cup \dots \cup A_n)^c = {A_1}^c \cap {A_2}^c \cap \dots \cap {A_n}^c$$
.

Since each A_i is closed, A_i^c is open.

Since finite intersection of open sets are open, $A_1^c \cap A_2^c \cap ... \cap A_n^c$ is open.

$$\therefore (A_1 \cup A_2 \cup \dots \cup A_n)^c$$
 is open.

$$A_1 \cup A_2 \cup \dots \cup A_n$$
 is closed.

Note: The union of an infinite number of closed sets in a metric space need not be closed.

For example, Consider R with usual metric.

Let
$$A_n = \left[\frac{1}{n}, 1\right]$$
 where $n = 1, 2, 3, \dots \dots$

Then
$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1 \right] = \{1\} \cup \left[\frac{1}{2}, 1 \right] \cup \left[\frac{1}{3}, 1 \right] \cup \dots \dots \dots$$

= $(0,1]$ which is not closd in R.

Hence, $\bigcup_{n=1}^{\infty} A_n$ is not closed.

Theorem 2.5: Let M b a metric space and M_1 be a subspace of M. Let $F_1 \subseteq M_1$. Then F_1 is closed in M_1 iff there exists a set F which is closed in M such that $F_1 = F \cap M_1$.

Proof: Let F_1 be closed in M_1 .

$$\therefore M_1 - F_1$$
 is open in M_1 .

$$\therefore M_1 - F_1 = A \cap M_1$$
 where A is open in M (By theorem 1.6)

Now,
$$F_1 = M_1 - (A \cap M_1) = M_1 - A = A^c \cap M_1$$
.

Also, since A is open in M, A^c is closed in M.

$$: F_1 = F \cap M_1$$
 where $F = A^c$ is closed in M.

Proof of the converse is similar.

CLOSURE

Definition: Let A be a subset of a metric space (M,d). The closure of A, denoted by \bar{A} is defined to be the intersection of all closed sets which contain A. Thus,

$$\bar{A} = \cup \{B/B \text{ is closed in M and } A \subseteq B\}.$$

Note: Since intersection of any collection of closed sets is closed, \bar{A} is a closed set. Further, $\bar{A} \supseteq A$. Also if B is any closed set containing A then $\bar{A} \subseteq B$. Thus \bar{A} is the smallest closed set containing A.

Theorem 2.6 : A is closed iff $A = \overline{A}$.

Proof: Suppose $A = \bar{A}$.

Since \bar{A} is closed, A is closed.

Conversely, suppose A is closed. Then the smallest closed set containing A is A itself. Hence $A = \bar{A}$.

Note: In particular, $(i)\emptyset = \overline{\emptyset}$ $(ii)M = \overline{M}$ $(iii)\overline{A} = \overline{A}$.

Example 1: Consider R with usual metric.

(a) Let A = [0,1]. We know that A is a closed set.

$$\therefore \bar{A} = A = [0.1].$$

(b) Let A=(0,1). Then [0,1] is a closed set containing (0,1). Obviously [0,1] is the smallest closed set containing (0,1).

$$\therefore \bar{A} = [0,1].$$

Example 2: In a discrete metric space (M,d) any subset A of M is closed. Hence $\bar{A} = A$.

Theorem 2.7: Let (M,d) be a metric space. Let $A, B \subseteq M$.

Then (i) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$

(ii)
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

(iii)
$$\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$$

Proof: (i) Let $A \subseteq B$

Now $\bar{B} \supseteq B \supseteq A$.

 \vec{B} is a closed set containint A.

But \bar{A} is the smallest closed set containing A.

$$\therefore \bar{A} \subseteq \bar{B}$$
.

(ii) We have $A \subseteq A \cup B$.

$$\therefore \ \bar{A} \subseteq \overline{A \cup B}.$$

Similarly, $\overline{B} \subseteq \overline{A \cup B}$

Now \bar{A} is a closed set containing A and \bar{B} is closed set containing B.

 $\therefore \bar{A} \cup \bar{B}$ is a closed set containing $A \cup B$.

But $\overline{A \cup B}$ is the smallest closed set containing $A \cup B$.

$$\therefore \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}. \tag{2}$$

From (1) and (2) we get $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

(iii) We have, $A \cap B \subseteq A$

$$\therefore \overline{A \cap B} \subseteq \overline{A}$$

Similarly, $A \cap B \subseteq B$

$$\therefore \overline{A \cap B} \subseteq \overline{B}$$

Hence, $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

Note : $\overline{A \cap B}$ need not be equal to $\overline{A} \cap \overline{B}$.

For example, in R with usual metric, take A=(0,1) and B=(1,2).

Then, $A \cap B = \emptyset$.

$$\therefore \overline{A \cap B} = \overline{\emptyset} = \emptyset.$$

But
$$\bar{A} \cap \bar{B} = [0,1] \cap [1,2] = \{1\}.$$

$$\therefore \overline{A \cap B} \neq \overline{A} \cap \overline{B}.$$

Note: In a metric space (M,d) if E_1, E_2, \dots, E_n are subsets of M then, $\overline{E_1 \cup E_2 \cup \dots \cup E_n} = \overline{E_1} \cup \overline{E_2} \cup \dots \cup \overline{E_n}$.

LIMIT POINT

Definition: Let (M,d) be a metric space. Let $A \subseteq M$. Let $x \in M$. Then x is called a limit point or a cluster point or an accumulation point of A if every open ball with centre x contains at least one point of A different from x.

$$i.e., B(x,r) \cap (A - \{x\}) \neq \emptyset$$
 for all $r > 0$.

The set of all limit points of A is called the derived set of A and is denoted by D(A). Note: x is not a limit point of A iff there exists an open ball B(x,r) such that $B(x,r) \cap (A - \{x\}) = \emptyset$.

Example 1: Consider R with usual metric.

(a) Let A=[0,1).

Any open ball with centre 0 is of the form (-r,r) which contains a point of [0,1) other than 0.

Hence 0 is a limit point of [0,1).

Similarly 1 is a limit point of [0,1).

2 is not a limit point of A, since $\left(2 - \frac{1}{2}, 2 + \frac{1}{2}\right) \cap [0,1) = \left(\frac{3}{2}, \frac{5}{2}\right) \cap [0,1) = \emptyset$.

In this case all points of [0,1] are limit points of [0,1) and no other point is a limit point. Hence D([0,1)) = [0,1].

(b) Let $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots \}$. Here 0 is a limit point of A.

For, consider any open ball (-r, r) with centre 0.

Choose a positive integer n such that $\frac{1}{n} < r$.

Then
$$\frac{1}{n} \in (-r, r)$$
.

 \therefore (-r,r) contains a point of A which is different from 0.

 \therefore 0 is a limit point of A.

1 is not a limit point of A since, $\left(1-\frac{1}{4},1+\frac{1}{4}\right)\cap\left(A-\left\{1\right\}\right)$

$$=\left(\frac{3}{4},\frac{5}{4}\right)\cap\left\{\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots,\frac{1}{n},\ldots,\right\}=\emptyset.$$

In fact any point except zero is not a limit point of A.

$$\therefore D(A) = \{0\}.$$

(c) Z has no limit point.

Proof: Let x be any real number.

If x is an integer, then $B\left(x,\frac{1}{2}\right) = \left(x - \frac{1}{2}, x + \frac{1}{2}\right)$ does not contain any integer other than x. Hence x is not a limit point of Z.

If x is not an integer, let n be the integer which is closest to x.

Choose r such that 0 < r < |x - n|.

Then B(x,r) = (x-r, x+r) contains no integer.

Hence x is not a limit point of Z.

Since x is arbitrary, Z has no limit point.

$$\therefore D(Z) = \emptyset.$$

(d) Consider Q. Any real number x is a limit point of Q, since the interval (x - r, x + r)contains infinite number of rational numbers.

$$\therefore D(0) = R.$$

Example 2: In $R \times R$ with usual metric, $D(Q \times Q) = R \times R$.

The proof is similar to example (d) of 1.

Example 3: Let (M,d) be a discrete metric space.

Let $A \subseteq M$. Let $x \in M$.

Then
$$B\left(x, \frac{1}{2}\right) \cap (A - \{x\}) = \{x\} \cap (A - \{x\}) = \emptyset.$$

 $\therefore x$ is not a limit point of A.

Since $x \in M$ is arbitrary, A has no limit point.

$$\therefore D(A) = \emptyset.$$

Thus any subset of a discrete metric space has no limit point.

Example 4: Consider C with usual metric.

Let
$$A = \{z/|z| < 1\}$$

Then
$$D(A) = \{z/|z| \le 1\}.$$

Theorem 2.8: Let (M,d) be a metric space. Let $A \subseteq M$. Then x is a limit point of A iff each open ball with centre x contains an infinite number of points of A.

Proof: Let x be a limit point of A.

To prove each open ball with centre x contains an infinite number of points of A.

Suppose an open ball B(x,r) contains only a finite number of points of A.

Let
$$B(x,r) \cap (A - \{x\}) = \{x_1, x_2, \dots, x_n\}$$

Let
$$r_1 = \min\{d(x, x_i)/i = 1, 2, \dots, n\}$$

Since $x \neq x_i$, $d(x, x_i) > 0$ for all i=1,2,....,n and hence $r_1 > 0$.

Also,
$$B(x, r) \cap (A - \{x\}) = \emptyset$$

x is not a limit point of A which is a contradiction.

Hence every open ball with centre x contains infinite number of points of A.

Conversely, if each open ball with centre x contains an infinite number of points of A then obviously x is a limit point of A.

Corollary: Any finite subset of a metric space has no limit point.

Proof: Let A be a finite subset of M.

To prove A has no limit point.

Suppose A has a limit point say x.

Then each open ball with centre x contains infinite number of points of A.

This is a contradiction since A is finite.

Hence, A has no limit point.

Theorem 2.9: Let M be a metric space and $A \subseteq M$. Then $\bar{A} = A \cup D(A)$.

Proof: Let $x \in A \cup D(A)$. We shall prove that $x \in \overline{A}$.

Suppose $x \notin \bar{A}$

 $x \in M - \bar{A}$ and since \bar{A} is closed, $M - \bar{A}$ is open.

$$B(x,r) \cap \bar{A} = \emptyset$$

$$B(x,r) \cap A = \emptyset$$
 [since $A \subseteq \overline{A}$]

 $x \notin A \cup D(A)$ which is a contradiction.

```
x \in \bar{A}.
 \therefore A \cup D(A) \subseteq \bar{A}.
                                              .....(1)
    Now, let x \in \bar{A}.
 To prove x \in A \cup D(A).
If x \in A then clearly x \in A \cup D(A).
 Suppose x \notin A. We claim that x \in D(A).
 Suppose x \notin D(A). Then there exists an open ball B(x,r) such that B(x,r) \cap A = \emptyset.
  B(x,r)^c \supseteq A.
  Since B(x,r) is open, B(x,r)^c is closed.
 But \bar{A} is the smallest closed set containing A.
  \therefore \bar{A} \subseteq B(x,r)^c.
 But x \in \overline{A} and x \notin B(x,r)^c which is a contradiction.
 Hence, x \in D(A).
      x \in A \cup D(A).
         \therefore \bar{A} \subseteq A \cup D(A).
                                  .....(2)
 From (1) and (2) \overline{A} = A \cup D(A).
```

Corollary 1: A is closed iff A contains all its limit points. i.e., A is closed iff $D(A) \subseteq A$.

Proof : A is closed $\Leftrightarrow A = \overline{A}$ [By theorem 2.6]

$$x \in A \text{ or } x \in D(A).$$

If $x \in A$ then $x \in B(x, r) \cap A$.

If $x \in D(A)$ then $B(x,r) \cap A \neq \emptyset$ for all r > 0.

Hence in both cases $B(x,r) \cap A \neq \emptyset$ for all r > 0.

Conversely, suppose $B(x,r) \cap A \neq \emptyset$ for all r > 0.

We have to prove that $x \in \bar{A}$.

If $x \in A$ trivially $x \in \bar{A}$.

Let $x \notin A$. Then $A - \{x\} = A$.

$$\therefore B(x,r)\cap (A-\{x\})\neq \emptyset.$$

 $\therefore x \in D(A).$

 $\therefore x \in \bar{A}$.

Corollary 3: $x \in \overline{A} \Leftrightarrow G \cap A \neq \emptyset$ for every open set G containing x.

Proof: Let $x \in \bar{A}$.

Let G be an open set containing x. Then there exists r > 0 such that $B(x,r) \subseteq G$.

Also, since $x \in \bar{A}$, $B(x,r) \cap A \neq \emptyset$.

$$\therefore G \cap A \neq \emptyset$$
.

Conversely, suppose $G \cap A \neq \emptyset$ for every open set G containing x.

Since B(x,r) is an open set containing x, we have $B(x,r) \cap A \neq \emptyset$.

$$x \in \bar{A}$$
.

Example 1: Consider R with ususal metric.

(a) Let
$$A = [0,1)$$
.

Then
$$\bar{A} = A \cup D(A)$$
.
= $[0,1) \cup [0,1]$
= $[0,1]$.

(b) Let
$$A = \left\{1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\right\}$$

Then
$$\bar{A} = A \cup D(A)$$
.

$$= \left\{1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\right\} \cup \{0\}.$$

(c)
$$\bar{Z} = Z \cup D(Z)$$

$$= Z \cup \emptyset = Z.$$

∴ Z is closed.

(d)
$$\bar{Q} = Q \cup D(Q)$$

$$= Q \cup R$$

$$= R$$
.

∴ Q is not closed.

Example 2: In $R \times R$ with usual metric.

$$\overline{Q \times Q} = (Q \times Q) \cup D(Q \times Q)$$
$$= (Q \times Q) \cup (R \times R)$$
$$= R \times R.$$

 $\therefore Q \times Q$ is not closed.

SOLVED PROBLEM

Problem 1: Prove that for any subset A of a metric space, $d(A) = d(\bar{A})$ where d(A) is the diameter of A.

Solution : We have $A \subseteq \overline{A}$.

$$\therefore d(A) \le d(\bar{A}). \tag{1}$$

Now, let $\varepsilon > 0$ be given. We claim that $d(\bar{A}) \le d(A) + \varepsilon$.

Thus $d(x, y) \le d(A) + \varepsilon$.

$$\therefore l.\,u.\,b\,\{d(x,y)/x,y\in\bar{A}\}\leq d(A)+\varepsilon.$$

i.e.,
$$d(\bar{A}) \le d(A) + \varepsilon$$
.

Now, since ε is arbitrary, we have $d(\bar{A}) \leq d(A)$ (4) By (1) and (4) we get $d(A) = d(\bar{A})$.

DENSE SETS

Definition : A subset A of a metric space M is said to be dense in M or everywhere dense if $\bar{A} = M$.

Definition: A metric space M is said to be separable if there exists a countable dense subset in M.

Example 1 : Let M be a metric space. Trivially, M is dense in M.

Hence any countable metric space is separable.

Example 2: In R with usual metric Q is dense in R since $\overline{Q} = R$.

Further Q is countable.

Hence R is separable.

Example 3 : Let M be a discrete metric space.

Let $A \subset M$ and since $A \neq M$.

Since A is closed, $\bar{A} = A$.

∴ A is not dense.

Hence, any countable discrete metric space is not separable.

Example 4: In $R \times R$ with usual metric $Q \times Q$ is a dense set since $\overline{Q \times Q} = R \times R$.

Also Q is countable and hence $Q \times Q$ is countable.

 $\therefore R \times R$ is separable.

Theorem 2.10: Let M be a metric space and $A \subseteq M$. Then the following are equivalent.

- (i) A is dense in M.
- (ii) The only closed set which contains A is M.
- (iii) The only open set disjoint from A is \emptyset .
- (iv) A intersects every nonempty open set.
- (v) A intersects every open ball.

Proof: (i)⇒(ii)

Suppose A is dense in M.

Then
$$\bar{A} = M$$
.(1)

Now, let $F \subseteq M$ be any closed set containing A.

Since, \bar{A} is the smallest closed set containing A, we have $\bar{A} \subseteq F$.

Hence,
$$M \subseteq F$$
. [by (1)]

Hence, M = F.

∴ The only closed set which contains A is M.

(ii)⇒(iii)

Suppose (iii) is not true.

Then there exists a non-empty open set B such that $B \cap A = \emptyset$.

$$B^c$$
 is a closed set and $B^c \supseteq A$.

Further, since $B \neq \emptyset$ we have $B^c \neq M$ which is a contradiction to (ii).

- (iii)⇒(iv) is obvious.
- $(iv) \Rightarrow (v)$, since every open ball is an open set we get the result.
- $(v)\Rightarrow(i)$

Let $x \in M$.

Suppose every open ball B(x,r) intersects A.

Then by Corollary 2 of Theorem 2.9, $x \in \bar{A}$.

$$\therefore M \subseteq \bar{A}.$$

But trivially $\bar{A} \subseteq M$.

$$\therefore \bar{A} = M$$
. Hence, A is dense in M.

SOLVED PROBLEM

Problem 1 : Give an example of a set E such that both E and E^c are dense in R.

Solution: Let E = Q.

Since any open ball B(x,r) = (x-r,x+r) contains both rational and irrational numbers Q and Q^c .

Hence Q and Q^c are dense in R.

COMPLETE METRIC SPACE

Definition: Let (M,d) be a metric space. Let $(x_n) = x_1, x_2, \dots, x_n, \dots$ be a sequence of points in M. Let $x \in M$. We say that (x_n) converges to x if given $\varepsilon > 0$ there exists a positive integer n_0 such that $d(x_n, x) < \varepsilon$ for all $n \ge n_0$. Also x is called a limit of (x_n) .

If
$$(x_n)$$
 converges to x we write $\lim_{n\to\infty} x_n = x$ or $(x_n)\to x$.

Note 1: $(x_n) \to x$ iff for each open ball $B(x, \varepsilon)$ with centre x there exists a positive integer n_0 such that $x_n \in B(x, \varepsilon)$ for all $n \ge n_0$.

Thus the open ball $B(x, \varepsilon)$ contains all but a finite number of terms of the sequence.

Note 2: $(x_n) \to x$ iff the sequence of real numbers $(d(x_n, x)) \to 0$.

Theorem 2.11: For a convergent sequence (x_n) the limit is unique.

Proof: Suppose $(x_n) \to x$ and $(y_n) \to y$.

Let $\varepsilon > 0$ be given.

Since, $(x_n) \to x$, there exists positive integer n_1 such that $d(x_n, x) < \frac{\varepsilon}{2}$ for all $n \ge n_1$.

Also, since $(y_n) \to y$, there exists positive integer n_2 such that $d(y_n, y) < \frac{\varepsilon}{2}$ for all $n \ge n_2$.

Let m be a positive integer such that $m \ge n_1, n_2$.

Then
$$d(x, y) \le d(x, x_m) + d(x_m, y)$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$
.

$$d(x,y) < \varepsilon$$
.

Since $\varepsilon > 0$ is arbitrary, d(x, y) = 0.

$$\therefore x = y$$
.

Note: In view of the above theorem if $(x_n) \to x$, then x is called of the limit of the sequence (x_n) .

Theorem 2.12: Let M be a metric space and $A \subseteq M$. Then

- (i) $x \in \overline{A}$ iff there exists a sequence (x_n) in A such that $(x_n) \to x$.
- (ii) x is a limit point of A iff there exists a sequence (x_n) of distinct points in A such that $(x_n) \to x$.

Proof: Let $x \in \overline{A}$. Then $x \in A \cup D(A)$.

 $x \in A \text{ or } x \in D(A).$

If $x \in A$, then the sequence x, x, x, ... is a sequence in A converging to x.

If $x \in D(A)$ then the open ball $B\left(x, \frac{1}{n}\right)$ contains infinite number of points of A.

- \therefore We can choose $x_n \in B\left(x, \frac{1}{n}\right) \cap A$ such that $x_n \neq x_1, x_2, \dots, x_{n-1}$ for each n.
- \therefore (x_n) is a sequence of distinct points in A.

Also, $d(x_n, x) < \frac{1}{n}$ for all n.

$$\therefore \lim_{n\to\infty} d(x_n, x) = 0.$$

$$\therefore (x_n) \to x$$
.

Conversely, suppose there exists a sequence (x_n) in A such that $(x_n) \to x$.

Then for any r > 0 there exists a positive integer n_0 such that $d(x_n, x) < r$ for all $n \ge n_0$.

$$x_n \in B(x,r)$$
 for all $n \ge n_0$.

$$B(x,r) \cap A \neq \emptyset$$
.

Hence, $x \in \bar{A}$.

Further, if (x_n) is a sequence of distinct points, $B(x,r) \cap A$ is infinite.

$$x \in D(A)$$
.

Hence, x is a limit point of A.

Definition: Let (M,d) be a metric space. Let (x_n) be a sequence of points in M. (x_n) is said to be a Cauchy sequence in M if given $\varepsilon > 0$ there exists a positive integer n_0 such that $d(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$.

Theorem 2.13: Let (M,d) be a metric space. Then any convergent sequence in M is a Cauchy sequence.

Proof: Let (x_n) be a convergent sequence in M converging to $x \in M$.

Let $\varepsilon > 0$ be given.

Then there exists a positive integer n_0 such that $d(x_n, x) < \frac{\varepsilon}{2}$ for all $n \ge n_0$.

$$\therefore d(x_m, x_n) \le d(x_m, x) + d(x, x_n)$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$$
 for all $m,n\geq n_0$.

 $= \varepsilon$ for all $m, n \ge n_0$.

Thus, $d(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$.

 \therefore (x_n) is a Cauchy sequence.

Note: The converse of the above theorem is not true. i.e., any Cauchy sequence need not be a convergence sequence.

For example, consider the metric space (0,1) with usual metric.

 $\left(\frac{1}{n}\right)$ is a Cauchy sequence in (0,1].

But this sequence does not converge to any point in (0,1].

Definition : A metric space M is said to be complete if every Cauchy sequence in M converges to a point in M.

Example 1: R with usual metric is complete. This is a fundamental fact to elementary analysis.

Note: The metric space (0,1] with usual metric is not complete.

Example 2 : C with usual metric is complete.

Proof: Let (z_n) be a Cauchy sequence in C.

Let $z_n = x_n + iy_n$ where $x_n, y_n \in R$.

We claim that (x_n) & (y_n) are Cauchy sequences in R.

Let $\varepsilon > 0$ be given.

Since (z_n) is a Cauchy sequence, there exists a positive integer n_0 such that $|z_n - z_m| < \varepsilon$ for all $n, m \ge n_0$.

Now,
$$|x_n - x_m| \le |z_n - z_m|$$
 and $|y_n - y_m| \le |z_n - z_m|$

Hence, $|x_n - x_m| < \varepsilon$ for all $n, m \ge n_0$ and $|y_n - y_m| < \varepsilon$ for all $n, m \ge n_0$.

 \therefore (x_n) and (y_n) are Cauchy sequences in R.

Since R is complete, there exists $x, y \in R$ such that $(x_n) \to x$ and $(y_n) \to y$.

Let z = x + iy.

We claim that $(z_n) \to z$.

Now, let $\varepsilon > 0$ be given.

Since, $(x_n) \to x$ and $(y_n) \to y$ there exists a positive integer n_1 and n_2 such that $|x_n - x| < \frac{\varepsilon}{2}$ for all $n \ge n_1$ and $|y_n - y| < \frac{\varepsilon}{2}$ for all $n \ge n_2$.

Let
$$n_3 = \max\{n_1, n_2\}.$$

From (1) we get $|z_n - z| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ for all $n \ge n_3$.

$$\therefore (z_n) \to z.$$

 \therefore z is complete.

Example 3: Any discrete metric space is complete.

Proof: Let (M,d) be a discrete metric space.

Let (x_n) be a Cauchy sequence in M.

Then there exists a positive integer n_0 such that $d(x_n, x_m) < \frac{1}{2}$ for all $n, m \ge n_0$.

Since d is the discrete metric, distance between any two points is either 0 or 1.

$$d(x_n, x_m) = 0$$
 for all $n, m \ge n_0$.

$$\therefore x_n = x_{n_0} = x \ (say) \ \text{for all} \ n \ge n_0.$$

$$d(x_n, x) = 0$$
 for all $n \ge n_0$.

$$\therefore (x_n) \to x.$$

Hence M is complete.

Example 4: R^n with usual metric is complete.

Proof: Let (x_p) be a Cauchy sequence in \mathbb{R}^n .

Let
$$(x_p) = (x_{p_1}, x_{p_2}, \dots \dots x_{p_n}).$$

Let $\varepsilon > 0$ be given.

Then there exists a positive integer n_0 such that $d(x_p, x_q) < \varepsilon$ for all $p, q \ge n_0$.

$$\therefore \left[\sum_{k=1}^n (x_{p_k} - x_{q_k})^2\right]^{1/2} < \varepsilon \text{ for all } p, q \ge n_0.$$

$$\div \textstyle \sum_{k=1}^n (x_{p_k} - x_{q_k})^2 < \varepsilon^2 \text{for all } p,q \geq n_0.$$

: For each k=1,2,, n we have
$$|x_{p_k} - x_{q_k}| < \varepsilon$$
 for all $p, q \ge n_0$.

 x_{p_k} is a Cauchy sequences in R for each k=1,2,....,n.

Since R is complete, there exists $y_k \in R$ such that $(x_{p_k}) \to y_k$.

Let
$$y = (y_1, y_2, \dots \dots y_n)$$
.

We claim that $(x_p) \to y$.

Since $(x_{p_k}) \to y_k$ there exists a positive integer m_k such that $|x_{p_k} - y_k| < \frac{\varepsilon}{\sqrt{n}}$ for all $p \ge m_k$.

Let $m_0 = \max\{m_1, m_2, \dots, m_n\}$.

Then
$$d(x_p, y) = \left[\sum_{k=1}^n (x_{p_k} - y_k)^2\right]^{1/2}$$

$$< \left[n\left(\frac{\varepsilon}{\sqrt{n}}\right)^2\right]^{1/2} \text{ for all } p \ge m_0.$$

$$= \varepsilon \text{ for all } p \ge m_0.$$

$$\therefore d(x_p,y) < \varepsilon \text{for all } p \geq m_0.$$

$$\therefore (x_p) \to y.$$

Hence, R^n is complete.

Example 5 : l_2 is complete.

Proof: Let (x_p) be a Cauchy sequence in l_2 .

Let
$$(x_p) = (x_{p_1}, x_{p_2}, \dots \dots x_{p_n}).$$

Let $\varepsilon > 0$ be given.

Then there exists a positive integer n_0 such that $d(x_p, x_q) < \varepsilon$ for all $p, q \ge n_0$.

$$\label{eq:second-equation} \div \left[\sum_{n=1}^{\infty} (x_{p_n} - x_{q_n})^2 \right]^{1/2} < \varepsilon \text{ for all } p,q \geq n_0.$$

:. For each n=1,2,, we have
$$|x_{p_n}-x_{q_n}|<\varepsilon$$
 for all $p,q\geq n_0$.

 \therefore (x_{p_n}) is a Cauchy sequences in R for each n.

Since R is complete, there exists $y_k \in R$ such that $(x_{p_n}) \to y_n$(2)

Let
$$y = (y_1, y_2, \dots \dots y_n, \dots)$$
.

We claim that $y \in l_2$ and $(x_p) \to y$.

For any fixed positive integer m, we have $\sum_{n=1}^{m}(x_{p_n}-x_{q_n})^2<\varepsilon^2$ for all $p,q\geq n_0$.

[using (1)]

Fixing q and allowing $p \to \infty$ in this finite sum we get

$$\sum_{n=1}^{m} (y_n - x_{q_n})^2 < \varepsilon^2 \text{ for all } q \ge n_0.$$

Since this is true for every positive integer $\mbox{m}\sum_{n=1}^{\infty}(y_n-x_{q_n})^2<\varepsilon^2$ for all $q\geq n_0$.

Now,
$$[\sum_{n=1}^{\infty} |y_n|^2]^{\frac{1}{2}} = \left[\sum_{n=1}^{\infty} |y_n - x_{q_n} + x_{q_n}|^2\right]^{\frac{1}{2}}$$

$$= \left[\sum_{n=1}^{\infty} |y_n - x_{q_n}|^2\right]^{\frac{1}{2}} + \left[\sum_{n=1}^{\infty} |x_{q_n}|^2\right]^{\frac{1}{2}}$$
[By Minkowski's inequality]
$$\leq \varepsilon + \left[\sum_{n=1}^{\infty} |x_{q_n}|^2\right]^{\frac{1}{2}}$$
for all $q \geq n_0$ (by (3)

Since $x_q \in l_2$ we have $\left[\sum_{n=1}^{\infty} \left|x_{q_n}\right|^2\right]^{\frac{1}{2}}$ converges.

$$\therefore \left[\sum_{n=1}^{\infty} |y_n|^2\right]^{\frac{1}{2}} converges.$$

$$\therefore y \in l_2$$
.

Also (3) gives $d(y, x_q) \le \varepsilon$ for all $q \ge n_0$.

$$\therefore \left(x_{p}\right) \rightarrow y.$$

 \therefore l_2 is complete.

Note: A subspace of a complete metric space need not be complete.

For example, R with usual metric is complete. But the subspace (0,1] is not complete.

Theorem 2.14: A subset A of a complete metric space M is complete iff A is closed.

Proof: Suppose A is complete.

To prove A is closed.

We shall prove that A contains all its limit points.

Let x be a limit point of A.

Then by theorem, there exists a sequence (x_n) in A such that $(x_n) \to x$.

Since A is complete, $x \in A$.

 \therefore A contains all its limit points.

Hence A is closed.

Conversely, let A be a closed subset of M.

To prove A is complete.

Let (x_n) be a Cauchy sequence in A.

Then (x_n) is a Cauchy sequence in M also and since M is complete there exists $x \in M$ such that $(x_n) \to x$.

Thus (x_n) is a sequence in A converging to x.

 $\therefore x \in \bar{A}$ (by theorem)

Now, since A is closed, $A = \bar{A}$.

 $\therefore x \in A$.

Thus every Cauchy sequence (x_n) in A converges to a point in A.

Hence A is complete.

Note 1: [0,1] with usual metric is complete since it is a closed subset of the complete metric space R.

Note 2 : Consider Q. Since $\overline{Q} = R$, Q is not a closed subset of R.

Hence Q is not complete.

Solved problems

Problem 1: Let A, B be subsets of R. Prove that $\overline{A \times B} = \overline{A} \times \overline{B}$.

Solution : Let $(x,y) \in \overline{A \times B}$

 \therefore There exists a sequence $((x_n, y_n)) \in A \times B$ such that $((x_n, y_n)) \to (x, y)$.

$$\therefore (x_n) \to x \text{ and } (y_n) \to y.$$

Also (x_n) is a sequence in A and (y_n) is a sequence in B.

 $x \in \overline{A}$ and $y \in \overline{B}$.

$$\therefore (x, y) \in \bar{A} \times \bar{B}.$$

Now, let $(x, y) \in \bar{A} \times \bar{B}$.

$$\therefore x \in \overline{A} \text{ and } y \in \overline{B}.$$

 \therefore There exists a sequence (x_n) in A and a sequence (y_n) in B such that $(x_n) \to x$ and

$$(y_n) \to y$$
.

 \therefore $((x_n, y_n))$ is a sequence in $A \times B$ such that $((x_n, y_n)) \rightarrow (x, y)$.

Hence $(x, y) \in \overline{A \times B}$

$$\therefore \bar{A} \times \bar{B} \subseteq \overline{A \times B}.$$
(2)

From (1) & (2) $\overline{A \times B} = \overline{A} \times \overline{B}$.

Problem 2: If A and B are closed subsets of R. Prove that $A \times B$ is a closed subset of $R \times R$.

Solution: Since A and B are closed sets we have $A = \overline{A}$ and $B = \overline{B}$.

Now,
$$\overline{A \times B} = \overline{A} \times \overline{B}$$
 [By problem 1]

$$=A \times B$$
.

 $A \times B$ is a closed set.

Theorem 2.15 (Cantor's Intersection Theorem)

Statement : Let (M,d) be a metric space. M is complete iff for every sequence (F_n) of non-empty closed subsets of M such that $F_1 \supseteq F_2 \supseteq \cdots \subseteq F_n \supseteq \cdots \subseteq G$ and $(d(F_n)) \to 0$, then $\bigcap_{n=1}^{\infty} F_n$ is nonempty.

Proof: Let (M,d) be a complete metric space.

Let (F_n) be a sequence of non-empty closed subsets of M such that

$$F_1 \supseteq F_2 \supseteq \cdots \ldots \supseteq F_n \supseteq \cdots \ldots$$
 (1)

and
$$(d(F_n)) \to 0$$
(2)

We claim that $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

For each positive integer n, choose a point $x_n \in F_n$.

By (1),
$$x_n, x_{n+1}, x_{n+2}, \dots \dots \dots$$
 all lie in F_n .

i.e.,
$$x_m \in F_n$$
 for all $m \ge n$(3)

Since, $(d(F_n)) \to 0$, given $\varepsilon > 0$, there exists a positive integer n_0 , such that $d(F_n) < \varepsilon$ for all $n \ge n_0$.

In particular
$$d(F_{n_0}) < \varepsilon$$
.(4)

$$d(x,y) < \varepsilon$$
 for all $x,y \in F_n$.

Now, $x_m \in F_{n_0}$ for all $m \ge n_0$. [by (3)]

$$\therefore m, n \geq n_0 \Rightarrow x_m, x_n \in F_{n_0}.$$

$$\Rightarrow d(x_m, x_n) < \varepsilon [By (4)]$$

 \therefore (x_n) is a Cauchy sequence in M.

Since M is complete there exists a point $x \in M$ such that $(x_n) \to x$.

We claim that $x \in \bigcap_{n=1}^{\infty} F_n$.

Now, for any positive integer n, $x_n, x_{n+1}, x_{n+2}, \dots \dots$ is a sequence in F_n and this sequence converges to x.

$$\therefore x \in \overline{F_n}$$
.

But $\overline{F_n}$ is closed and hence $\overline{F_n} = F_n$.

$$\therefore x \in F_n$$
.

$$\therefore x \in \bigcap_{n=1}^{\infty} F_n.$$

Hence, $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Conversely, assume that for every sequence (F_n) of non-empty closed subsets of M such that $F_1 \supseteq F_2 \supseteq \cdots \ldots \supseteq F_n \supseteq \cdots \ldots$ and $(d(F_n)) \to 0$, then $\bigcap_{n=1}^{\infty} F_n$ is nonempty.

To prove M is complete.

Let (x_n) be a Cauchy sequence in M.

Let
$$F_1 = \{x_1, x_2, x_3, \dots, x_n, \dots \}$$

$$F_2 = \{x_2, x_3, \dots, x_n, \dots \}$$

$$F_n = \{x_n, x_{n+1}, \dots \}$$

Clearly, $F_1 \supseteq F_2 \supseteq \cdots \ldots \supseteq F_n \supseteq \cdots \ldots$

$$\div \overline{F_1} \supseteq \overline{F_2} \supseteq \cdots \ldots \ldots \supseteq \overline{F_n} \supseteq \cdots \ldots$$

 \therefore $(\overline{F_n})$ is a decreasing sequence of closed sets.

Now, since (x_n) is a Cauchy sequence, given $\varepsilon > 0$ there exists a positive integer n_0 , such that $d(x_n, x_m) < \varepsilon$ for all $n, m \ge n_0$.

:For any integer $n \ge n_0$, the distance between any two points of F_n is less than ε .

$$\therefore d(F_n) < \varepsilon \text{ for all } n \ge n_0.$$

But
$$d(F_n) = d(\overline{F_n})$$
.

Hence, $\bigcap_{n=1}^{\infty} \overline{F_n} \neq \emptyset$.

Let
$$x \in \bigcap_{n=1}^{\infty} \overline{F_n}$$
.

Then x and $x_n \in \overline{F_n}$.

$$\therefore d(x_n, x) \leq \overline{F_n}.$$

$$< \varepsilon \text{ for all } n \ge n_0.$$
 [From (5)]

$$\therefore (x_n) \to x.$$

∴ M is complete.

Note 1 : In the above theorem $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

For, suppose $\bigcap_{n=1}^{\infty} F_n$ contains two distinct points x and y.

Then $d(F_n) \ge d(x, y)$ for all n.

- $d(F_n)$ does not tend to zero which is a contradiction.
- $\therefore \bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

Note 2: In the above theorem $\bigcap_{n=1}^{\infty} F_n$ may be empty if each F_n is not closed.

For example, consider $F_n = \left(0, \frac{1}{n}\right)$ in R.

Clearly,
$$F_1 \supseteq F_2 \supseteq \cdots \ldots \supseteq F_n \supseteq \cdots \ldots$$
 and $(d(F_n)) \to 0$ as $n \to \infty$.

But,
$$\bigcap_{n=1}^{\infty} F_n = \emptyset$$
.

Note 3: In the above theorem $\bigcap_{n=1}^{\infty} F_n$ may be empty if the hypothesis $(d(F_n)) \to 0$ is omitted.

For example, consider $F_n = [n, \infty)$ in R.

Clearly (F_n) is a sequence of closed sets and $F_1 \supseteq F_2 \supseteq \cdots \ldots \supseteq F_n \supseteq \cdots \ldots$

Also,
$$\bigcap_{n=1}^{\infty} F_n = \emptyset$$
.

Here, $d(F_n) = \infty$ for all n and hence the hypothesis $(d(F_n)) \to 0$ is not true.

BAIRE'S CATEGORY THEOREM

Definition: A subset A of a metric space M is said to be nowhere dense in M if $Int\bar{A} = \emptyset$.

Definition: A subset A of a metric space M is said to be of first category in M if A can be expressed as a countable union of nowhere dense sets.

A set which is not of first category is said to be of second category.

Note: If A is of first category then $A = \bigcup_{n=1}^{\infty} E_n$ where E_n is nowhere dense subsets in M.

Example 1: In R with usual metric $A = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots, \frac{1}{n}, \dots \right\}$ is nowhere dense.

For,
$$\bar{A} = A \cup D(A) = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots, \frac{1}{n}, \dots \right\}$$

Clearly $Int\bar{A} = \emptyset$.

Example 2 : In any discrete metric space M, any non-empty subset A is not nowhere dense.

For, in a discrete metric space every subset is both open and closed.

$$\therefore \bar{A} = Int\bar{A} = IntA = A.$$

- $\therefore Int \bar{A} \neq \emptyset$.
- ∴ A is not nowhere dense.

Example 3: In R with usual metric any finite subset A is nowhere dense.

For, let A be any finite subset of R.

Then A is closed and hence $A = \bar{A}$.

Also since A is finite, no point of A is an interior point of A/

- $\therefore Int\bar{A} = IntA = \emptyset.$
- ∴ A is nowhere dense.

Example 4: Consider R with usual metric. Any singleton set $\{x\}$ is nowhere dense.

: Any countable subset of R being a countable union of singleton sets is of first category.

In particular Q is of first category.

Note: If A and B are sets of first category in a metric space M then $A \cup B$ is also of first category.

For, since A and B are of first category in M we have $A = \bigcup_{n=1}^{\infty} E_n$ and $B = \bigcup_{n=1}^{\infty} H_n$ where E_n and H_n are nowhere dense subsets in M.

 $A \cup B$ is a countable union of nowhere dense subsets of M.

Hence $A \cup B$ is of first category.

Theorem 2.16 (Equivalent characterisations of nowhere dense sets

Let M be a metric space and $A \subseteq M$. Then the following are equivalent.

- (i) A is nowhere dense in M.
- (ii) \bar{A} dos not contain any non-empty open set.
- (iii) Each non-empty open set has a non-empty open subset disjoint from \bar{A} .
- (iv) Each non-empty open set has a non-empty open subset disjoint from A.
- (v) Each non-empty open set contains an open sphere disjoint from A.

Theorem 2.17 (Baire's Category Theorem)

Statement: Any complete metric space is of second category.

Proof: Let M be a complete metric space.

To prove M is of second category.

i.e. to prove M is not of first category.

Let (A_n) be a sequence of nowhere dense sets in M.

We claim that $\bigcup_{n=1}^{\infty} A_n \neq M$.

Since, M is open and A_1 is nowhere dense, there exists an open ball B_1 of radius less than 1 such that B_1 is disjoint from A_1 .

Let F_1 denote the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_1 .

Now Int F_1 is open and A_2 is nowhere dense.

 \therefore Int F_1 contains an open ball B_2 of radius less than $\frac{1}{2}$ such that B_2 is disjoint from A_2 .

Let F_2 denote the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_2 .

Now $Int F_2$ is open and A_3 is nowhere dense.

 \therefore Int F_2 contains an open ball B_3 of radius less than $\frac{1}{4}$ such that B_3 is disjoint from A_3 .

Let F_3 denote the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_3 .

Proceding like this we get a sequence of non-empty closed balls F_n such that $F_1 \supseteq F_2 \supseteq \cdots \subseteq F_n \supseteq \cdots \subseteq f_n \supseteq \cdots \subseteq d(F_n) < \frac{1}{2^n}$.

Hence
$$(d(F_n)) \to 0$$
 as $n \to \infty$.

Since, M is complete, by Cantor's Intersection theorem, there exists a point x in M such that $x \in \bigcap_{n=1}^{\infty} F_n$.

Also, each F_n is disjoint from A_n .

Hence, $x \notin A_n$ for all n.

$$\therefore x \notin \bigcup_{n=1}^{\infty} A_n$$
.

$$\therefore \bigcup_{n=1}^{\infty} A_n \neq M.$$

Hence M is of second category.

Corollary: R is of second category.

Proof: We know that R is a complete metric space. Hence R is of second category.

Note: The converse of the above theorem is not true.

i.e., A metric space which is of second category need not be complete.

For example, Consider M=R-Q, the space of irrational numbers.

We know that Q is of first category.

Suppose M is of first category. Then MUQ=R is also of first category which is a contradiction.

Hence, M is of second category.

Also M is not a closed subspace of R and hence M is not complete.

Exercises

- I. Determine which of the following statements are true and which are false.
- 1. In R with discrete metric Z is a bounded set.
- 2. In R with usual metric Z is a bounded set.
- 3. In a discrete metric space every subset is bounded.
- 4. A subset of a metric space is bounded iff its diameter is finite.
- 5. A non-empty subset of a metric space is bounded iff its diameter is finite.
- 6. Any open ball is a non-empty set.
- 7. Any open ball is a bounded set.
- 8. In a discrete metric space M any open ball is either a singleton set or the whole space.
- 9. In R with usual metric [0,1) is neither open nor closed.
- 10. A set is closed iff its complement is open.
- II. Prove that any nonempty open interval (a,b) in R is of second category.
- III. Prove that a closed set A in a metric space M is nowhere dense iff A^c is everywhere dense.
- IV. Prove that union of a countable number of sets which are of first category is again of first category.

UNIT III

CONTINUITY

Definition:

Let (M_1,d_1) and (M_2,d_2) be two metric spaces. Let $f: M1 \to M2$ be a function. Let $a \in M_1$ and $l \in M_2$. The function f is said to have the limit l as $x \to a$ if given $\varepsilon > 0$ there exists $\delta > 0$ such that $0 < d_1(x,a) < \delta \Rightarrow d_2(f(x), l) < \varepsilon$. We write $\lim_{x \to a} f(x) = l$.

Let (M_1,d_1) and (M_2,d_2) be the two metric spaces. Let $a \in M_1$. A function $f:M_1 \to M_2$ is said to be continuous at a if given $\varepsilon > 0$ there exists $\delta > 0$ such that $d_1(x,a) < \delta \Rightarrow$ $d_2(f(x),f(a)) < \varepsilon$. f is said to be continuous if it is continuous at every point of M.

Note:

- 1. f is continuous at a iff $\lim_{x\to a} f(x) = f(a)$.
- 2. The condition $d_1(x,a) < \delta \Rightarrow d_2(f(x),f(a)) < \varepsilon$ can be rewritten as

i.
$$x \in B(a, \delta) \Rightarrow f(x) \in B(f(a), \varepsilon)$$
 or

ii.
$$f(B(a,\delta)) \subseteq B(f(a),\varepsilon)$$

Examples:

1. Let $f:M_1 \rightarrow M_2$ be given by f(x)=a where $a \in M_2$ is a fixed element.

Proof:

Let $x \in M_1$ and $\varepsilon > 0$ be given

Then for any
$$\delta > 0$$
, $f(B(x, \delta)) = \{a\} \subseteq B(a, \varepsilon) = B(f(x), \varepsilon)$

$$\therefore \ f(B(x,\delta))\subseteq B(f(x),\varepsilon)$$

Since $x \in M_1$ is arbitrary, f is continuous.

2. Let (M_1,d_1) be a discrete metric and (M_2,d_2) be any metric space. Them any function $f:M_1 \rightarrow M_2$ is continuous i.e, any function whose domain is a discrete metric space is continuous.

Proof:

Let $x \in M_1$ and $\varepsilon > 0$ be given

Since M_1 is discrete, for any $\delta > 1$, $B(x, \delta) = \{x\}$

$$f(B(x,\delta)) = f(x) \subseteq B(f(x),\varepsilon)$$

Since $x \in M_1$ is arbitrary, f is continuous.

Theorem 3.1

Let (M_1,d_1) and (M_2,d_2) be the two metric spaces. Let $a \in M_1$. A function $f:M_1 \to M_2$ is continuous at a iff $(x_n) \rightarrow \alpha \Rightarrow (f(x_n)) \rightarrow f(a)$

proof:

Assume that f is continuous at a.

Let (x_n) be a sequence in M_1 such that $(x_n) \rightarrow a$

We claim that $(f(x_n)) \rightarrow f(a)$

Let $\varepsilon > 0$ be given

By the definition of continuity, there exists $\delta > 0$ such that

$$d_1(x,a) < \delta \Rightarrow d_1(f(x),f(a)) < \varepsilon$$
 -----(1)

Also $(x_n) \rightarrow a$ there exists a positive integer n_0 such that $d_1(x_n,a) < \delta$ for all $n > n_0$

$$\therefore d_2(f(x_n), f(a)) < \varepsilon \text{ for all } n > n_0 \text{ [from (1)]}$$

$$\therefore (f(x_n)) \rightarrow f(a)$$

Conversly, assume that $(x_n) \rightarrow a \Rightarrow (f(x_n)) \rightarrow f(a)$

We claim that f is continuous at a.

Suppose f is not continuous at a.

Then there exists $\varepsilon > 0$ such that for all $\delta > 0$

$$(f(B(a,\delta)) \not\subset B(f(a),\varepsilon)$$

In particular, $(f(B(a, \frac{1}{n})) \notin B(f(a), \varepsilon)$

Choose x_n such that $x_n \in B(a, \frac{1}{n})$ and $f(x_n) \notin B(f(a), \varepsilon)$

$$x_n \in B(a, \frac{1}{n}) \Rightarrow d1(x_n, a) <, \frac{1}{n}$$

$$f(x_n) \notin B(f(a), \varepsilon) \Rightarrow d2(f(x_n), f(a)) > \varepsilon$$

 \therefore $(f(x_n)) \nrightarrow f(a)$, which is a contradiction to our assumption.

 \therefore f is continuous at a.

Corollary:

A function $f:M_1 \to M_2$ is continuous iff $(x_n) \to a \Rightarrow (f(x_n)) \to f(x)$.

Theorem 3.2

Let (M_1,d_1) and (M_2,d_2) be the two metric spaces. Let $a \in M_1$. A function $f:M_1 \to M_2$ is continuous iff $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 . ie, f is continuous iff inverse image of every open set is open.

Proof:

Suppose f is continuous

Let G be an open set in M₂

We claim that $f^{-1}(G)$ is open in M_1

If $f^{-1}(G)$ is empty, then it is open.

Let $f^{-1}(G) \neq \varphi$

Let $x \in f^{-1}(G)$

Hence $f(x) \in G$.

Since G is open, there exists an open ball $B(f(x),\varepsilon)$ such that $B(f(x),\varepsilon)\subseteq G$ -----(1)

Now by definition of continuity, there exists an open ball $B(x, \delta)$ such that

$$f(B(x,\delta)) \subseteq B(f(x),\varepsilon)$$

$$\therefore$$
f(B(x, δ)) \subseteq G [by(1)]

$$:B(x,\delta))\subseteq f^{-1}(G)$$

Since $x \in f^{-1}(G)$ is arbitrary, $f^{-1}(G)$ is open.

Conversly, suppose $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 .

We claim that, f is continuous

Let $x \in M_1$

Now B(f(x), ε) is a open set in M₂

$$\therefore$$
 f⁻¹(B(f(x), ε)) is open in M₁ and x \in f⁻¹(B(f(x), ε))

There exists $\delta > 0$ such that $B(x,\delta) \subseteq f^{-1}(B(f(x),\varepsilon))$

$$f(B(x,\delta))\subseteq B(f(x),\varepsilon)$$

 \therefore f is continuous at x.

Since $x \in M_1$ is arbitrary, f is continuous.

Note:

1.If $f:M_1 \rightarrow M_2$ is continuous and G is open in M_1 then it if not necessary that f(G) is open in M₂.ie, under a continuous map the image of an open set need not be an open set.

For example:

Let $M_1=R$ with discrete metric and $M_2=R$ with usual metric.

Let $f:M_1 \rightarrow M_2$ be defined by f(x)=x.

Since M_1 is discrete every subset of M_1 is open.

Hence for any open subset G of M_2 , $f^{-1}(G)$ is open in M_1

∴ f is continuous

Now, $A=\{x\}$ is open in M_1 but $f(A)=\{x\}$ is not open in M_2 .

2.In the above example, f is continuous bijection whereas $f^{-1}:M_1 \rightarrow M_2$ is not continuous.

For, $\{x\}$ is an open set in M_2 .

 $(f^{-1})^{-1}(\{x\})=\{x\}$ which is not open in M_2

∴ f⁻¹ is not continuous.

Thus if f is a continuous bijection f-1 need not be continuous.

We now give wet another characterization of continuous function in terms of closed sets.

Theorem 3.3

Let (M_1,d_1) and (M_2,d_2) be the two metric spaces. A function $f:M_1 \rightarrow M_2$ is continuous iff f⁻¹(F) is closed in M₁ whenever F is closed in M₂

Proof:

Suppose $f:M_1 \rightarrow M_2$ is continuous

Let $F \subseteq M_2$ be closed in M_2

 $:F^c$ is open in M_2

 \therefore f⁻¹(F^c) is open in M₁

But $f^{-1}(F^c) = [f^{-1}(F)]^c$

f⁻¹(F) is closed in M₁.

Conversely, We claim that f is continuous

Let G be an open set in M₂

: G^c is closed in M₁

 $:f^{-1}(G^c)$ is closed in M_1

 $[f^{-1}(G)]^c$ is closed in M_1

 $[f^{-1}(G)]$ is open in M_1

 \therefore [f⁻¹(G)] is open in M₁, whenever f is continuous

G is open in M₂

We give one more characterization of continuous function in terms of closure of a set.

Theorem 3.4

Let (M_1,d_1) and (M_2,d_2) be the two metric spaces. Let $a \in M_1$. A function $f:M_1 \to M_2$ is Continuous iff $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \subseteq M_1$.

Proof:

Suppose f is continuous

Let $A \subseteq M_1$ then $f(A) \subseteq M_2$

Since f is continuous, f⁻¹($\overline{f(A)}$) is closed in M₁

Also,
$$f^{-1}(\overline{f(A)}) \supseteq A$$
 $[\because \overline{f(A)} \supseteq f(A)]$

But \bar{A} is the smallest closed set containing A

$$\therefore \bar{A} \subseteq f^{-1}(\overline{f(A)})$$

$$: f(\bar{A}) \subseteq \overline{f(A)}$$

Conversely, let $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \subseteq M_1$

To prove f is continuous,

We shall show that if F is closed set in M₂ then f⁻¹ is closed in M₁

By hypothesis
$$f(\overline{f^{-1}(F)}) \subseteq \overline{f f^{-1}(F)}$$

$$\subseteq \bar{F}$$

$$= \mathbf{F}$$

Thus,
$$f(\overline{f^{-1}(F)} \subseteq F$$

$$(\overline{f^{-1}(F)} \subseteq f^{-1}(F)$$

Also $f^{-1}(F) \subseteq (\overline{f^{-\iota}(F)})$

$$:: f^{-1}(F) = f^{-1}(F)$$

Hence f⁻¹(F) is closed. Hence, f is continuous

Problem:1

Let f be a continuous real value function defined on; a metric space M. Let

 $A=\{x\in M: f(x)\geq 0\}$. Prove that A closed.

Solution:

$$A = \{x \in M: f(x) \ge 0\}$$

$$= \{x \in M: f(x) \in [0, \infty)\}$$

$$= f^{-1}([0, \infty))$$

Also $[0,\infty)$ is closed subset of R

Since f is continuous

 $f^{-1}[0,\infty)$ is closed in M

∴ A is closed

Problem:2

Show that function f: $R \rightarrow R$ defined by $f(x) = \begin{cases} 0, & \text{if } x \text{ is } irrational \\ 1, & \text{if } x \text{ is } rational \end{cases}$ is not continuous by each of the following methods.

- i. By the usual ε , δ method
- ii. By the exhibiting a sequence (x_n) such $(x_n) \rightarrow x$ and $(f(x_n))$ does not converge to f(x)
- iii. By the exhibiting an open set G such that F⁻¹(G) is not open
- iv. By exhibiting a closed subset F such that f⁻¹(F) is not closed
- v. By exhibiting a subset of A of R such that $f(\overline{A}) \not\subset \overline{f(A)}$

Solution:

i. To prove f is not continuous at x

We have to show that there exists an $\varepsilon > 0$ such that for all $\delta > 0$,

$$f(B(x,\delta))\not\subset B(f(x),\varepsilon)$$

Let
$$\varepsilon = \frac{1}{2}$$

For any $\delta > 0$, $B(x,\delta) = (x-\delta, x+\delta)$ contains both rational and irrational numbers

If x is rational, choose $y \in B(x, \delta)$ such that y is irrational and if x is irrational, choose $y \in B(x, \delta)$ such that y is rational

Then |f(x) - f(y)| = 1 [by the definition of f]

i.e,
$$d(f(x),f(y))=1$$

$$\therefore f(y) \notin B(f(x), \frac{1}{2})$$

Thus $y \in B(x, \delta)$ and $f(y) \notin B(f(x), \frac{1}{2})$

Hence f is not continuous at x

ii. Let $x \in R$

Suppose x is rational then f(x)=1

Let (x_n) be a sequence of irrational numbers such that $(x_n) \rightarrow x$

Then
$$(f(x_n)) \rightarrow 0$$
 and $f(x)=1$

$$\therefore$$
 (f(x_n)) does not converges to f(x)

Proof is similar if x is irrational

iii. Let
$$G = \left(\frac{1}{2}, \frac{3}{2}\right)$$

Clearly G is open in R

Now,
$$f^{-1}(G) = \{x \in R : f(x) \in G\}$$
$$= \{x \in R : f(x) \in \left(\frac{1}{2}, \frac{3}{2}\right)\}$$
$$= Q$$

But Q is not open in R

Thus f⁻¹(G) is not open in R

∴ f is not continuous

iv. Choose
$$F = \left[\frac{1}{2}, \frac{3}{2}\right]$$

Then $f^{-1}(F)=Q$ which is not closed in R

∴ f is continuous

Let A=Q. Then \bar{A} =R v.

$$f(\bar{A}) = f(R) = \{0,1\}$$
 [by definition of f]

Also, $f(A)=f(Q)=\{1\}$

$$\therefore f(\overline{A}) = \{\overline{1}\} = \{1\}$$

$$\overline{f(A)} \not\subset f(\bar{A})$$

∴ f is not continuous

Problem:3

Let M_1 , M_2 , M_3 be a metric spaces. If $f:M_1 \rightarrow M_2$ and $g:M_2 \rightarrow M_3$ are continuous function. Prove that gof: $M_1 \rightarrow M_3$ is also continuous. i.e, Composition of two continuous functions is also continuous.

Solution:

Let G be open in M₃

Since g is continuous, g-1(G) is open in M2

Now, since f is continuous, $f^{-1}(g^{-1}(G))$ is open in M_1

ie, $(gof)^{-1}(G)$ is open in M_1

∴ gof is continuous

Problem:4

Let M be a metric space. Let $f:M \to R$ and $g:M \to R$ be two continuous functions. Prove that $f+g:M \to R$ is continuous.

Solution:

Let
$$(x_n)$$
 be a sequence converging to x in M

Since f and g are continuous functions, $(f(x_n)) \rightarrow f(x)$ and $(g(x_n)) \rightarrow g(x)$

ie,
$$((f+g)(x_n)) \rightarrow (f+g)(x)$$

∴ f+g is continuous

Problem:5

Let f, g be continuous real valued functions on a metric space M. Let $A=\{x:x\in M \ and \ f(x) < g(x)\}$. Prove that A is open.

Solution:

Since f and g are continuous real valued functions on M, f-g is also a continuous real valued function on M.

Now, $(-\infty, 0)$ is open in R and f - g is continuous

Hence
$$(f - g)^{-1}\{(-\infty, 0)\}$$
 is open in M

∴ A is open in M

Problem:6

If $f:R \to R$ and $g:R \to R$ are bothe continuous functions on R and if $h:R^2 \to R^2$ is defined by h(x,y)=(f(x),g(y)). Prove that h is continuous on R^2

Let (x_n, y_n) be sequence in R^2 converging to (x, y)**Solution:**

We claim that $(h(x_n,y_n))$ converges to h(x,y)

Since
$$(x_n, y_n) \rightarrow (x, y)$$
 in R^2 , $(x_n) \rightarrow (x)$ and $(y_n) \rightarrow (y)$ in R^2

Also f and g are continuous.

$$: (f(x_n)) \rightarrow f(x) \text{ and } (g(y_n)) \rightarrow g(y)$$

$$\therefore (f(x_n),g(y_n)) {\rightarrow} (f(x),g(y))$$

$$hlikehildrength hat (h(x_n,y_n)) \rightarrow h(x,y)$$

 \therefore h is continuous on \mathbb{R}^2

Problem:7

Let (M,d) be a metric space. Let $a \in M$. Show that function $f:M \to R$ defined by f(x)=d(x,a) is continuous

Solution:

Let $x \in M$

Let (x_n) be a sequence in M such that $(x_n) \rightarrow (x)$

We claim that $(f(x_n)) \rightarrow f(x)$

Let $\varepsilon > 0$ be given

Now,
$$|f(x_n)-f(x)| = |d(x_n,a)-d(x,a)|$$

 $\leq d(x_n,x)$

Since $(x_n) \rightarrow (x)$ there exists a positive integer n_1 such that $d(x_n, x) < \varepsilon$ for all $n \ge n_1$

$$|f(x_n)-f(x)| < \varepsilon \text{ for all } n \ge n_1$$

$$(f(x_n)) \rightarrow f(x)$$

∴ f is continuous

Problem:8

Let f be a function from \mathbb{R}^2 onto r defined by f(x,y)=x for all $(x,y)\in\mathbb{R}^2$. Show that f is continuous in \mathbb{R}^2 .

Solution:

Let
$$(x,y) \in R^2$$

Let((x_n, y_n)) be a sequence in R converging to (x, y).

Then $(x_n) \rightarrow (x)$ and $(y_n) \rightarrow (y)$.

$$\therefore (f(x_n, y_n)) = (x_n) \rightarrow (x) = f(x, y)$$

$$\therefore (f(x_n,y_n)) \rightarrow f(x,y)$$

 \therefore f is continuous

Problem:9

Define f: $l_2 \rightarrow l_2$ as follows. If $S \in l_2$ is the sequence S_1, S_2, \ldots Let f(S) be the sequence $0,S_1,S_2,...$ Show that f is continuous

Solution:

Let
$$y=(y_1, y_2, ..., y_n) \in I_2$$

Let (x_n) be a sequence in l_2 converging to y

Let
$$x_n = (x_{n1}, x_{n2}, ..., x_{nk}, ...)$$

Then $(x_{n1})\rightarrow y_1$, $(x_{n2})\rightarrow y_2,\ldots,(x_{nk})\rightarrow y_k,\ldots$

$$: (f(x_n))=((0, x_{n1}, x_{n2}, \dots, x_{nk}, \dots)) \rightarrow (0, y_1, y_2, \dots, y_k, \dots)=f(y)$$

$$: (f(x_n)) \rightarrow f(y)$$

∴ f is continuous

Problem:10

Let G be an open subset of R. Prove that the characterization function on g defined by $\chi_G(x) = \begin{cases} 1, & \text{if } x \in G \\ 0, & \text{if } x \notin G \end{cases}$ is continuous at every point of G

Solution:

Let
$$x \in G$$
 so that $\chi_G(x)=1$

Let $\varepsilon > 0$ be given

Since G is open and $x \in G$, we can find a $\delta > 0$ such that $B(x,\delta) \subseteq G$

$$\therefore \chi_G(\mathbf{B}(\mathbf{x}, \delta)) \subseteq \chi_G(\mathbf{G})$$

$$= \{1\}$$

$$= B(1, \varepsilon).$$

Thus $\chi_G(B(x,\delta))\subseteq B(\chi_G(x),e)$

Homeomorphism

Let (M_1,d_1) and (M_2,d_2) be two metric spaces. A function $f:M_1 \to M_2$ is called a homeomorphism if

- i. f is 1-1 and onto
- ii. f is continuous
- f⁻¹ is continuous iii.

The metric spaces M₁and M₂ are said to be homeomorphic if there exists a homeomorphism $f: M_1 \longrightarrow M_2$.

Definition:

A function $f: M_1 \longrightarrow M_2$ is said to an open map if f(G) is open in M_2 for every open set g in M_1 . ie, f is an open map if the image of an open set in M_1 is an open set in M_2 . A function $f:M_1 \longrightarrow M_2$ is said to be a closed map if f(G) is closed in M_2 for every closed set G in M_1 . ie, f is a closed map if the image of a closed set in M_1 is a closed set in M_2 .

Note 1: Let $f: M_1 \to M_2$ be a bijection, then f^{-1} is continuous iff f is an open map.

Proof:

 $f^{-1}:M_1 \longrightarrow M_2$ is continuous iff $(f^{-1})^{-1}(G)$ is open in M_2 whenever G is open in M_1 .

iff f(G) is open in M_2 whenever G is open in M_1 .

iff G is open in M_1 whenever f(G) is open in M_2 .

iff f is an open map.

 \therefore f⁻¹ is continuous iff f is an open map.

Note 2: Similarly, f¹ is continuous iff f is a closed map

Note 3 : Let $f:M_1 \rightarrow M_2$ be a bijection, then the following are equivalent

- i. f is a homeomorphism
- ii. f is a continuous open map
- iii. f is a continuous closed open

Note 4 : Let $f:M_1 \rightarrow M_2$ be a homeomorphism, f is a homeomorphism iff it satisfies the condition F is closed in M_1 iff f(F) is closed in M_1

Note 5: Let $f: M_1 \to M_2$ is a bijection then f is a homeomorphism if it satisfies the condition F is closed in M_1 iff f(F) is closed in M_2

Examples: 1

The metric space [0,1] and [0,2] with usual metric are homeomorphic.

Proof:

Define $f: [0,1] \rightarrow [0,2]$ defined by f(x)=2x.

$$f(x) = f(y) \Rightarrow 2x = 2y \Rightarrow x = y$$

 \therefore f is one-one

For all $y \in [0,2]$ there exist $x \in [0,1]$ such that f(x) = y

$$\Rightarrow 2x = y$$

$$\Rightarrow x = \frac{y}{2} \in [0,1].$$
 : f is onto

 \therefore *f* is bijection.

Clearly *f* is continuous.

Also
$$f^{-1}(x) = \frac{x}{2}$$
 is also continuous.

 \therefore f is homomorphism.

Examples:2

The metric space is $(0, \infty)$ and R with usual metrics are homeomorphic.

Proof: Define f: $(0,\infty) \rightarrow \mathbb{R}$ defined by $f(x) = log_e x$

Now,
$$f(x)=f(y) \Rightarrow log_e x=log_e y$$

$$\Rightarrow e^{\log_e x} = e^{\log_e y}$$

$$\Rightarrow$$
 x=y

∴ f is one- one

For all $y \in R$ there exist $x \in (0, \infty)$ such that f(x)=y

$$\Rightarrow log_e x=y$$

$$\Rightarrow e^{\log_e x} = e^y$$

$$\Rightarrow$$
 x = $e^y \in (0, \infty)$

∴f is onto

∴ f is bijection

Clearly f: $(0,\infty)\rightarrow R$ defined by $f(x)=log_e$ x is continuous.

$$f^{-1}$$
: $(0,\infty) \rightarrow \mathbb{R}$ defined by $f(x)=e^x$ is continuous.

: f is homeomorphism.

Example:3

The metric space $(-\pi/2, \pi/2)$ and R with usual metric are homeomorphic.

Proof: Define f: $(-\pi/2, \pi/2) \rightarrow R$ defined by f(x)=tanx.

$$f(x)=f(y) \Rightarrow tanx = tany$$

$$\Rightarrow x=y$$

∴ f is one- one

For all y \in R there exist $x \in (-\pi/2, \pi/2)$ such that f(x) = y

$$\Rightarrow$$
tanx=y \Rightarrow x = tan⁻¹y $\in (-\pi/2, \pi/2)$

∴ f is onto

: f is bijection

Clearly f: $(-\pi/2, \pi/2) \rightarrow R$ defined by f(x)=tan x is continuous.

 f^{-1} : R $\rightarrow (-\pi/2, \pi/2)$ defined by $f(x) = tan^{-1}y$ is also continuous.

: f is homeomorphism.

Example:4

R with usual metric is not homeomorphic to R with discrete metric.

Proof: Let M_1 =R with usual metric

Let M_2 =R with discrete metric

Let $f:M_1 \longrightarrow M_2$ be any bijection

Now, $\{a\}$ is open in M_2 , but $f^{-1}(\{a\})$ is not open in M_1 .

∴ f is not continuous

Thus any bijection $f: M_1 \longrightarrow M_2$ is not homeomorphism.

Hence M_1 is not homeomorphism to M_2

Example:5

The metric spaces (0,1) and $(0,\infty)$ with usual metric are homeomorphic.

Proof: Define $f:(0,1) \to (0,\infty)$ defined by $f(x) = \frac{x}{1-x}$

$$f(x)=f(y) \Rightarrow \frac{x}{1-x} = \frac{y}{1-y}$$

$$\Rightarrow$$
 x(1-y) =y(1-x)

$$\Rightarrow$$
x-xy = y-xy

$$\Rightarrow$$
x=y

For all $y \in (0, \infty)$ there exist $x \in (0,1)$ such that f(x)=y

$$\Rightarrow \frac{x}{1-x} = y$$

$$\Rightarrow \frac{x}{1-x} = \frac{1}{y}$$

$$\Rightarrow \frac{1}{x} - 1 = \frac{1}{y}$$

$$\Rightarrow \frac{1}{x} = \frac{1}{y} + 1$$

$$\Rightarrow x = \frac{y}{1+y}$$

- ∴f is onto
- ∴ f is bijection

Clearly f is continuous.

 f^{-1} : $\frac{x}{1-x}$ is also continuous.

: f is homeomorphism.

Definition: Let (M_1,d_1) and (M_2,d_2) be two metric spaces.Let $f: M_1 \rightarrow M_2$ be any bijection f is said to be isometry if $d_1(x, y) = d_2(f(x), f(y))$ for all $x, y \in M_1$

In other words an isometry is an distance preserving map M_1 and M_2 are said to be isometric if there exists an isometry $f:M_1$ onto M_2

Examples:

- 1. R^2 with usual metric and C with usual metric are isometric and $f: R^2 \longrightarrow C$ defined by f(x,y)=x+iy is a required isometric.
- 2. Let d_1 be the usual metric on [0,1] and d_2 be the usual metric on [0,2] be map $f:[0,1] \rightarrow [0,2]$ defined by f(x)=2x is not a isometry.

$$d_{2}(f(x),f(y))=|f(x) - f(y)|$$

$$= |2x - 2y|$$

$$= 2|x - y|$$

$$= 2d_{1}(x,y)$$

$$\therefore d_{1}(x,y) \neq d_{2}(f(x),f(y))$$

∴ f is not a isometry.

Note:

Since an isometry f preserves distances, the image of an open ball B(x,r) is the open ball B(f(x,r)).

Uniform Continuity:

Let (M_1,d_1) and (M_2,d_2) be two metric spaces. A function $f:M_1 \to M_2$ is said to be uniformly continuous on M_1 if given $\varepsilon > 0$, there exists $\delta > 0$ such that $d_1(x,y) < \delta \Rightarrow d_2(f(x),f(y)) < \varepsilon$.

Note:1

Uniform continuity is a global condition on the behaviour of a mapping on a set. Continuity is a local condition on the behaviour of function at a point.

Note 2: If $f: M_1 \to M_2$ is uniformly continuous on M_1 , then f is continuous at every point of M_1 , but a continuous function need not be uniformly continuous on M_1 .

SOLVED PROBLEMS

Problem 1: Prove that $f: [0,1] \to R$ defined by $f(x) = x^2$ is uniformly continuous on [0,1].

Solution:

Let
$$\varepsilon > 0$$
 be given.
Let $x, y \in [0,1]$
Then $x \le 1, y \le 1$

$$|f(x) - f(y)| = |x^2 - y^2|$$

$$= |x - y| |x + y|$$

$$\le 2 |x - y|$$
Let $\delta = \varepsilon / 2$
If $|x - y| < \delta = \frac{\varepsilon}{2} \Rightarrow |f(x) - f(y)| < \varepsilon$

: f is uniformly continuous on [0,1]

Problem 2: Prove that $f:(0,1) \rightarrow \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous. **Solution:**

Let $\varepsilon > 0$ be given.

Suppose there exists $\delta \ge 0$ such that $|x - y| \le \delta \Rightarrow |f(x) - f(y)| \le \epsilon$ Given f(x) = 1/x,

$$\left|\frac{1}{x} - \frac{1}{y}\right| < \varepsilon$$

Take
$$x = y + \frac{\delta}{2} \Rightarrow x - y = \frac{\delta}{2}$$

Clearly $|x - y| = \frac{1}{2}\delta < \delta$.

$$\therefore |f(x) - f(y)| < \varepsilon$$

$$\left| \frac{1}{x} - \frac{1}{y} \right| < \varepsilon.$$

$$\therefore \left| \frac{1}{y + \frac{\delta}{2}} - \frac{1}{y} \right| < \varepsilon$$

$$\left. : \left| \frac{\delta}{(2y+\delta)y} \right| < \varepsilon.$$

This inequality cannot be true for all $y \in (0,1)$. Since $\frac{\delta}{(2y+\delta)y}$ becomes arbitrarily large as y approaches zero.

: f is not uniformly continuous.

Prove that the function $f: R \to R$ defined by $f(x) = \sin x$ is uniformly Problem 3: continuous on R.

Solution:

Let x, $y \in R$ and x > y.

By Mean Value Theorem,

$$\sin x - \sin y = (x - y) \cos z$$
, where $x > z > y$.

$$\Rightarrow$$
 $|f(x) - f(y)| = |\sin x - \sin y|$

$$= |x - y| |\cos z|$$

$$\leq |\mathbf{x} - \mathbf{y}| \times 1$$

$$= |\mathbf{x} - \mathbf{y}|$$

Hence for a given $\varepsilon > 0$, if we choose $\delta = \varepsilon$, we have

$$|x - y| \le \delta \Rightarrow |f(x) - f(y)| = |\sin x - \sin y| \le \epsilon$$

 $f(x) = \sin x$ is uniformly continuous on R.

Discontinuous functions on R

A function $f: R \to R$ is said to approach a limit l as $x \to a$ if given $\epsilon > 0$ there exists $\delta > 0$ such that $0 < |x - a| < \delta \Rightarrow |f(x) - l| < \epsilon$ and we write $\lim_{x \to a} f(x) = l$.

Definition:

A function f is said to have l as the right limit at x = a if, given $\varepsilon > 0$, there exists $\delta > 0$ such that $a < x < a + \delta \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a+} f(x) = l$.

Also, we denote the right limit by f(a+).

A function f is said to have l as the left limit at x = a if, given $\varepsilon > 0$, there exists $\delta > 0$ such that $a - \delta < x < a \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a^-} f(x) = l$.

Also, we denote the left limit by f(a-).

Notes:

- 1. $\lim_{x\to a} f(x)$ exists if and only if the left and right limits of f(x) at x=a exist and are equal.
- 2. The definition of continuity of f at x = a can be formulated as follows:

f is continuous at a if and only if f(a+) = f(a-) = f(a).

- 3. If $\lim_{x\to a} f(x)$ does not exist, then one of the following must hold:
 - (i) $\lim_{x \to 2^+} f(x)$ does not exist.
 - (ii) $\lim_{x\to 2^-} f(x)$ does not exist.
 - (iii) $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist but are unequal.

Definition If a function f is discontinuous at a, then a is called a point of discontinuity for the function.

If a is a point of discontinuity of a function f, then any one of the following cases arises:

- (i) $\lim_{x\to a} f(x)$ exists but is not equal to f(a).
- (ii) $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist and are not equal.
- (iii) Either $\lim_{x\to a^-} f(x)$ or $\lim_{x\to a^+} f(x)$ does not exist.

Definition: Let a be a point of discontinuity for f(x), then a is said to be a point of discontinuity of the first kind if $\lim_{x\to a+} f(x)$ and $\lim_{x\to a-} f(x)$ exist and both of them are finite and unequal.

The point a is said to be a point of discontinuity of the second kind if either if $\lim_{x\to a^+} f(x)$ or if $\lim_{x\to a^-} f(x)$ does not exist or is infinite or if $\lim_{x\to a^-} f(x)$ does not exists.

Definition: Let $A \subseteq R$. A function $f: A \to R$ is called "monotonic increasing" if $x < y \Rightarrow f(x) \le f(y)$.

f is called monotonic decreasing if $x > y \Rightarrow f(x) \ge f(y)$.

A function f is called "monotonic" if it is either monotonic increasing or monotonic decreasing.

Theorem 3.5 Let $f: [a, b] \to R$ be a monotonic increasing function. Then f has a left limit at every point of (a, b). Also f has a right limit at a and f has a left limit at b. Further $x < y \Rightarrow f(x + 1) \le f(y - 1)$. Similar result is true for monotonic decreasing function.

Proof: Let $f: [a, b] \rightarrow R$ be monotonic increasing.

Let $x \in [a, b]$.

Then $\{f(t): a \le t < x\}$ is bounded above by f(x).

Let
$$l = 1.u.b \{f(t): a \le t < x\}$$

We claim that f(x-) = l.

Let $\varepsilon > 0$ be given. By definition of l.u.b there exists t such that $a \le t < x$ and

$$l - \varepsilon < f(t) \le l$$
.

$$\therefore t < u < x \Rightarrow l - \varepsilon < f(t) \le f(u) \le f(x)$$

(: f is monotonic increasing).

$$\Rightarrow l - \varepsilon < f(u) \le l$$

$$\therefore x - \delta < u < x \Rightarrow l - \varepsilon < f(u) \le l \text{ where } \delta = x - t$$

$$:f(x-)=l$$
.

Similarly, we can prove that $f(x+) = g.l.b \{f(t): x \le t \le b\}$

Similarly, let $f: [a, b] \rightarrow R$ be monotonic decreasing.

Let $x \in [a, b]$.

Then $\{f(t): x \le t \le b\}$ is bounded below by f(x).

Let
$$l = g.l.b \{f(t): x < t \le b\}.$$

We claim that f(x+) = l.

Let $\varepsilon > 0$ be given. By definition of g.l.b there exists t such that

$$x \le t \le b$$
 and $l \le f(t) \le l + \varepsilon$.

$$\therefore$$
 t < u < x \Rightarrow l \leq f(t) < f(u) < l + ϵ (\because f is monotonic decreasing)

$$\Rightarrow l \leq f(u) < l + \varepsilon$$

$$\therefore x < u < x + \delta \Rightarrow l \le f(u) < l + \varepsilon \text{ where } \delta = x - t.$$

$$\therefore$$
 f(x+) = l .

Now we shall prove that $x < y \Rightarrow f(x +) \le f(y -)$

Let x < y

$$f(x +) = g.1.b \{f(t): x \le t \le y\}$$

$$= g.1.b \{f(t): x < t \le y\}$$
(1)

$$f(y -) = l.u.b \{ f(t): a \le t < y \}$$

= 1.u.b {
$$f(t): x \le t < y$$
}(2)

From (1) & (2) we get $f(x +) \le f(y -)$

Theorem 3.6: Let $f: [a, b] \to R$ be a monotonic function. Then the set of points of [a, b] at which f is discontinuous is countable.

Proof: Let $E = \{x: x \in [a, b] \text{ and } f \text{ is discontinuous at } x\}$

Let $x \in E$

f(x+) and f(x-) exists and $f(x-) \le f(x+)$

If
$$f(x-) = f(x+)$$
, then $f(x-) = f(x+) = f(x)$

 \therefore f is continuous at x, which is a contradiction to $f(x-) \neq f(x+)$

$$f(x-) < f(x+)$$

Now choose a rational number r(x) such that f(x-) < r(x) < f(x+)

This defines a map r: $E \rightarrow Q$ which maps x to r(x)

We claim that r is 1-1.

Let $x_1 < x_2$.

By the previous theorem: $x < y \Rightarrow f(x+) \le f(y-)$

$$\therefore x_1 < x_2. \Rightarrow f(x_1+) \le f(x_2-)$$

Also $f(x_1 -) < r(x_1) < f(x_1 +)$ and $f(x_2 -) < r(x_2) < f(x_2 +)$.

$$r(x_1) < f(x_1 +) < f(x_2 -) < r(x_2)$$

Thus $x_1 < x_2 \Rightarrow r(x_1) < r(x_2)$.

$$\therefore r: E \rightarrow 0 \text{ is } 1-1$$

Hence E is countable.

Definition : A subset D of R is said to be of type $F\sigma$ if D can be expressed as the countable union of closed sets.i.e., $D = U_{n=1}^{\infty} F_n$ where F_n is a closed subset of R.

Notes:

- 1. Any closed subset F is of type Fo since $F=U_{n=1}^{\infty}$ F_n where $F_n=F$ for all n.
- 2. A set of type $F\sigma$ need not be closed.

Example: Q is of type F_{σ} but Q is not closed.

Definition: Consider any function f: $R \to R$. Let I be a bounded open interval in R. Then the oscillation of f over I is denoted by $\omega(f, I)$ and it is defined by

$$\omega(f,I) = l.u.b \{ f(x) : x \in I \} - g.l.b \{ f(x) : x \in I \}.$$

If a \in R, then the oscillation off at a is denoted by $\omega(f, a)$ and it is defined by $\omega(f, a) =$ $g.l.b\omega(f,I)$ where the g.l.b is taken over all bounded open intervals containing a.

Note:

- 1. For any $n \in \mathbb{Z}$, $\omega(f, n) = 1$.
- 2. From the definition $\omega(f, I) \geq 0$ for any I.

Hence $\omega(f, a) \geq 0$ for any $a \in R$.

Theorem 3.7: A function f: $R \to R$ is continuous at $a \in R$ iff $\omega(f, a) = 0$.

Proof:

Suppose f is continuous at a.

To prove $\omega(f, a) = 0$.

Let $\varepsilon > 0$ be given.

Then there exists $\delta > 0$ such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon/2$

Let
$$I = (a - \delta, a + \delta)$$

For any
$$x \in I$$
, $|f(x) - f(a)| < \frac{\varepsilon}{2}$

$$|f(x) - f(y)| = |f(x) - f(a) + f(a) - f(y)|$$

$$\leq |f(x) - f(a)| + |f(y) - f(a)|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon$$

For any
$$x, y \in I, |f(x) - f(y)| < \varepsilon$$

$$: \omega(f, I) < \varepsilon$$

$$\therefore g.l.b\omega(f,I) < \varepsilon$$

i.e.,
$$\omega(f,a) < \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, $\omega(f, a) = 0$.

Conversely, assume that $\omega(f, a) = 0$.

To prove f is continuous at a.

Let $\varepsilon > 0$ be given.

We have $\omega(f, a) = 0$.

$$\Rightarrow g.l.b\omega(f,I) = 0.$$

 \therefore There exists a bounded open interval I containing a such that $0 < \omega(f, I) < \varepsilon$.

Let
$$x_1, x_2 \in I$$
.

Then
$$f(x_1) \le l.u.b\{f(x) : x \in I\}$$
 and $f(x_2) \ge g.l.b\{f(x) : x \in I\}$

$$\Rightarrow -f(x_2) \le -g.l.b\{f(x) : x \in I\}$$

$$\Rightarrow |f(x_1) - f(x_2)| \le l.u.b\{f(x) : x \in I\} - g.l.b\{f(x) : x \in I\}$$

$$= \omega(f,I) < \varepsilon$$

$$\therefore |f(x_1) - f(x_2)| < \varepsilon$$

In particular, $|f(x) - f(a)| < \varepsilon$ for all $x \in I$.

Since I is a bounded open interval containing a, we can choose $\delta > 0$ such that

$$(a - \delta, a + \delta) \subseteq I.$$

$$\therefore |f(x) - f(a)| < \varepsilon \text{ for all } \in (a - \delta, a + \delta)$$

$$\therefore |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

 \therefore f is continuous at a.

Theorem 3.8 : Let $f: R \to R$ be any function. Let r > 0.

Then
$$E_r = \{a \in R \mid \omega(f, a) \geq 1/r\}$$
 is a closed set.

Proof: Let x be any limit point of E_r .

We claim that $x \in E_r$.

For this, we must prove that $\omega(f, x) \ge 1/r$.

Now let I be any bounded open interval containing x.

Since x is the limit point of E_r, I contains a point y of E_r.

Hence I is a bounded open interval containing y.

$$\dot{\cdot} \omega(f,y) \le \omega(f,I)$$

Since
$$y \in E_r, \omega(f, y) \ge 1/r$$

$$\therefore$$
 we have $\omega(f,I) \geq \omega(f,y) \geq 1/r$

This is true for any bounded open interval I containing x.

$$\div \, \omega(f,x) \, \geq \, 1/r$$

$$x \in E_r$$

 \therefore E_r contains all its limit points.

Hence E_r is closed.

Theorem 3.9: Let D be the set of points of discontinuities of a function $f: R \to R$. Then D is of type Fσ.

Proof: Let D be the set of points of discontinuities of f.

To prove: D is of type $F\sigma$.

i.e., To prove $D = U_{n=1}^{\infty} E_n$, where $E_n = \{a \in \mathbb{R} \mid \omega(f, a) \ge 1/n\}$ is closed.

Let $x \in D$.

 \therefore f is discontinuous at x.

$$\omega(f, x) > 0$$
.

 $\Rightarrow \omega(f, x) \ge 1/n$ for some n > 0.

 \therefore x $\in E_n$ for some n > 0.

$$\therefore \mathbf{x} \in U_{n=1}^{\infty} E_n$$
.

$$x \in D \Rightarrow x \in U_{n=1}^{\infty} E_n$$

Let
$$x \in U_{n=1}^{\infty} E_n$$

 $x \in E_n$ for some positive integer n.

$$∴\omega(f, x) \ge 1/n$$
 for some $n > 0$

Hence
$$\omega(f, x) > 0$$

 \therefore f is discontinuous at x.

Hence $x \in D$

$$x \in U_{n=1}^{\infty} E_n \Rightarrow x \in D$$

$$: U_{n=1}^{\infty} E_n \subseteq D - (2)$$

From (1) & (2),

$$D = U_{n=1}^{\infty} E_n$$

Also each E_n is closed.

Thus D is a countable union of closed sets.

 \therefore D is of type Fo

Theorem 3.10: There is no function $f: R \to R$ such that f is continuous at each rational number and discontinuous at irrational number.

Proof: Suppose A is of type $F\sigma$.

Then $A = \bigcup_{n=1}^{\infty} F_n$ where each Fn is closed.

Now, since Fn contains only irrational number, Fn cannot contain any open interval.

$$\therefore$$
 Int Fn = φ

Int
$$\overline{Fn} = \varphi$$
 [:Fn is closed]

- $\therefore F_n$ is nowhere dense
- ∴ A is of first category, which is a contradiction.
- \therefore A is not of type Fo.

Hence, the theorem.

Exercises

- 1. Let $f: R \to R$ be defined by $f(x) = \begin{cases} -2 & \text{if } x < 0 \\ 2 & \text{if } x \ge 0 \end{cases}$. Prove that f is not continuous.
- 2. Let (M,d) be any metric space. Let $f: M \to R$ and $g: M \to R$ be any two continuous functions. Define
 - (fg)(x) = f(x)g(x)(i)
 - (cf)(x) = cf(x) where $c \in R$. (ii)
 - $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ if $g(x) \neq 0$ for all $x \in M$. (iii)

Prove that fg. cf and f/g are all continuous.

- 3. Give an example of a map from R to itself which is continuous and closed but not an open map. [Hint: Consider any constant map]
- 4. Let (M,d) be any metric space. Prove that the identity map $i: M \to M$ is a homeomorphism.
- 5. Determine which of the following functions are uniformly continuous.
 - $f: R \to R$ defined by f(x) = kx where $k \in R$.
 - f: $R \to R$ defined by $f(x) = x^3$. (ii)
 - f: (0,1) $\rightarrow R$ defined by $f(x) = \frac{1}{1-x}$.
- 6. Let $f: R \to R$ and $g: R \to R$ be two functions uniformly continuous on R. Prove that f + g is also uniformly continuous on R.
- 7. Is the product of uniformly continuous real valued functions again uniformly continuous?

UNIT IV

CONNECTEDNESS

Definition: Let (M, d) be a metric space, then M is said to be connected if M cannot be expressed as the union of two disjoint non-empty open sets. If M is not connected it is said to be disconnected.

Examples:

1. Let M= [1,2] U [3,4] with usual metric. Then M is disconnected.

Proof: [1,2] & [3,4] are open in M.

Also,
$$A=[1,2] \neq \Phi$$
; $B=[3,4] \neq \Phi \& A \cap B = \Phi$

Thus, M is the Union of two disjoint non-empty open sets.

2. In a discreate metric space M with more than one point is disconnected.

Proof: Let A be a proper non-empty subset of M.

Since M has more than one point such a set exist.

The A^C is also non-empty.

Since M is discrete every subset of M is open.

∴A& A^C are open.

Thus, M=AU A^C, where A& A^C are two disjoint non-empty open set.

∴M is not connected.

THEOREM 4.1: Let (M, d) be a metric space. Then the following are equivalent.

- (i) M is connected.
- (ii) M cannot be written as the union of two disjoint non-empty closed sets.
- (iii) M cannot be written as the union of two non-empty sets A&B such that $A \cap \overline{B} = \overline{A} \cap B = \Phi$.
- (iv) $M\&\Phi$ are the only sets which are both open & closed in M.

Proof: (i)=>(ii)

Assume that M is connected.

To Prove: M cannot be written as the union od two disjoint non-empty closed sets.

Suppose M can be written as the union of two disjoint non-empty closed sets.

∴M=AUB, where A&B are closed,

 $A \neq \Phi$, $B \neq \Phi$ & $A \cap B = \Phi$.

Since, $A \cap B = \Phi$, $A^c = B$, $B^c = A$.

Since, A&B are closed, A^C & B^C are open.

- ∴ B & A are open.
- ∴ M=AUB, where A&B are open, $A \neq \Phi$, $B \neq \Phi$ & $A \cap B = \Phi$.
- : M is disconnected, which is a contradiction.
- ∴ Our assumption is wrong.

Hence, M cannot be written as the union of two disjoint non-empty closed sets.

Assume that M cannot be written as the union of two disjoint non-empty closed sets.

To Prove: M cannot be written as the union of two disjoint non-empty sets A&B such that $A \cap \overline{B} = \overline{A} \cap B = \Phi$.

Suppose M can be written as the union of two disjoint non-empty sets A&B such that $A \cap \overline{B} = \overline{A} \cap B = \Phi$.

We claim that A & B are closed sets.

i.e.)., To Prove: $A=\overline{A} \& B=\overline{B}$.

Let $x \in \overline{A}$

We have $\overline{A} \cap B = \Phi$.

∴x ∉ B

 $\therefore x \in A \text{ (since, AUB=M)}$

 $\therefore \overline{A} \subseteq A$

Always $A \subseteq \overline{A}$

Hence, $A = \overline{A}$

Let $x \in \overline{B}$

We have $A \cap \overline{B} = \Phi$.

 $x \notin A$

Since AUB=M, $x \in B$, $x \notin A$

∴Ē⊆B

Always $B \subseteq \overline{B}$

 $:B = \overline{B}$

Also, $A \cap \overline{B} = \overline{A} \cap B = \Phi$.

∴ M can be written as the union of two disjoint non-empty sets, which is acontradiction to our assumption.

Hence, M cannot be written as the union of two non-empty sets A&B such that $A \cap \overline{B} = \overline{A} \cap B = \Phi$.

(iii)=>(iv)

Assume that M cannot be written as the union of two non-empty sets A&B such that $A \cap \overline{B} = \overline{A} \cap B = \Phi.$

To prove M & Φ are the only sets which are both open & closed in M.

Suppose M & Φ are the only sets which are both open & closed in M is not true.

Then there exists $A \subseteq M$ such that $A \neq M$ & $A \neq \Phi$ & A is both open and closed.

Let $B = A^C$

Then B is also both open and closed & $B\neq\Phi$.

Also, M=AUB

Further, $\overline{A} \cap B = A \cap A^C = \Phi$. [since, A is closed, $A = \overline{A} \& B = A^C$]

Similarly,

If $A=B^C$, then $A \cap \overline{B} = \Phi$

 \therefore M=AUB, where A $\cap \overline{B} = \overline{A} \cap B = \Phi$.

which is contradiction to (iii)

: Our assumption is wrong.

Hence (iii)=>(iv).

(iv) = >(i)

Assume that M is connected.

Prove that M & Φ are the only sets which are both open & closed in M.

Suppose M is not connected.

 \therefore M=AUB, where A \neq Φ , B \neq Φ , A&B are open and A \cap B = Φ .

Then $B^C = A$.

Now, Since B is open, B^C is closed.

∴ A is closed.

Also, $A \neq \Phi \& A \neq M$.

: A is the proper non-empty subset of M which is both open & closed which is a contradiction to both.

Hence, (iv)=>(i).

EQUIVALENT CHARACTERIZATIONS FOR COMPACTNESS

Theorem 4.2: A metric space M is connected iff there does not exist a continuous function f: M onto the discrete metric space $\{0, 1\}$.

Proof: Suppose M is connected.

To prove: there does not exist a continuous function f: M onto the discrete metric space $\{0, 1\}.$

Suppose there exists a continuous function $f: M \text{ onto } \{0, 1\}$.

Since $\{0, 1\}$ is discrete, $\{0\}$ and $\{1\}$ are open.

$$A = f^{-1}(\{0\})$$
 and $B = f^{-1}(\{1\})$.

We know that: Inverse image of every open set is open.

$$f^{-1}(\{0\})$$
 and $f^{-1}(\{1\})$ are open in A.

 \therefore A and B are open in M.

Since f is onto, A and B are non-empty.

Clearly,
$$A \cap B = \emptyset$$
 and $A \cup B = M$.

Thus, $M = A \cup B$, where A and B are disjoint non-empty open sets.

: M is not connected, which is a contradiction.

Hence, there does not exist a continuous function $\{0, 1\}$.

Conversely, Assume that there does not exist a continuous function f: M onto the discrete metric space $\{0, 1\}$.

To Prove: M is connected.

Suppose M is not connected.

Then there exist disjoint non-empty open sets A and B in M such that $M = A \cup B$.

Now, define f:
$$M \to \{0, 1\}$$
 at $f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$

Clearly, f is onto.

Also,
$$f^{-1}(\emptyset) = \emptyset$$
, $f^{-1}(\{0\}) = A$, and $f^{-1}(\{1\}) = B$, $f^{-1}(\{0,1\}) = M$.

Thus, the inverse image of every open set in $\{0, 1\}$ is open in M.

Hence, f is continuous, which is a contradiction to our assumption.

Thus, M is connected.

Note: The above theorem can be restated as follows:

M is connected iff every continuous function f: $M \rightarrow \{0, 1\}$ is not onto.

SOLVED PROBLEMS

Problem 1: Let M be a metric space. Let A be a connected subset of M. If B is the subset of M such that $A \subseteq B \subseteq \overline{A}$, then B is connected. In particular, \overline{A} is connected.

Solution: Let M be a metric space. Let A be a connected subset of M. If B is the subset of M such that $A \subseteq B \subseteq \bar{A}$.

To prove B is connected.

Suppose B is not connected.

Then B = $B_1 \cup B_2$ where $B_1 \neq \emptyset$, $B_2 \neq \emptyset$, $B_1 \cap B_2 = \emptyset$ and B_1 , B_2 are open in B.

Now, since B_1 and B_2 are open sets in B, there exist open sets G_1 and G_2 in M such that $B_1 = G_1 \cap B$ and $B_2 = G_2 \cap B$.

 $A \subseteq G_1 \cup G_2$ [Since $A \subseteq B$].

$$\therefore A = (G_1 \cup G_2) \cap A = (G_1 \cap A) \cup (G_2 \cap A).$$

Now, $G_1 \cap A$ and $G_2 \cap A$ are open in A.

Further,
$$(G_1 \cap A) \cap (G_2 \cap A) = (G_1 \cap G_2) \cap A$$
.

$$= (G_1 \cap G_2) \cap A \quad [Since A \subseteq B]$$

$$= (G_1 \cap B) \cap (G_2 \cap B)$$

$$= B_1 \cap B_2$$

$$= \emptyset.$$

 $\therefore (G_1 \cap A) \cap (G_2 \cap A) = \emptyset.$

Now, since A is connected, either $G_1 \cap A = \emptyset$ or $G_2 \cap A = \emptyset$.

Without loss of generality, let us assume that $G_1 \cap A = \emptyset$.

Since G_1 is open in M, we have $G_1 \cap A = \emptyset$.

$$\therefore G_1 \cap B = \emptyset. \qquad [since, B \subseteq A]$$

 $B_1 = \emptyset$, which is a contradiction.

∴ B is connected.

In particular, A is also connected.

Problem 2: If A and B are connected subsets of a metric space M and if $A \cap B \neq \Phi$, prove that AUB is connected.

Solution: Let f: $A \cup B \rightarrow \{0,1\}$ be a continuous function.

Since, $A \cap B \neq \Phi$, we can choose $x_0 \in A \cap B$.

Let $f(x_0)=0$.

 \therefore f: A \cup B \rightarrow {0,1} is continuous f/A: A \rightarrow {0,1} is also continuous.

But A is connected.

Hence f/A is not onto.

f(x) = 0 for all $x \in A$ or f(x) = 1 for all $x \in A$.

But $f(x_0) = 0$ and $x_0 \in A$.

f(x) = 0 for all $x \in A$.

Similarly,

f(x) = 0 for all $x \in B$.

 $\therefore f(x) = 0 \text{ for all } x \in AUB.$

Thus, any continuous function f: A \cup B \rightarrow {0,1} is not onto.

 \therefore A \cup B is connected.

CONNECTED SUBSETS OF R

Theorem 4.3 : A subspace of R is connected iff it is an interval.

Proof: Let A be a connected subset of \mathbb{R} .

Suppose A is not an interval.

Then there exists $a, b, c \in \mathbb{R}$ such that a < b < c and $a, c \in A$, but $b \notin A$.

Let
$$A_1 = (-\infty, b) \cap A$$
 and $A_2 = (b, \infty) \cap A$.

Since $(-\infty, b)$ and (b, ∞) are open in \mathbb{R} , A_1 and A_2 are open sets in A.

Also,
$$A_1 \cap A_2 = \emptyset$$
 and $c \in A_2$.

Further, $a \in A_1$ and $c \in A_2$.

Hence $A_1 \neq \emptyset$ and $A_2 \neq \emptyset$.

Thus, A is the union of two disjoint non-empty open sets A_1 and A_2 .

Hence A is not connected, which is a contradiction.

Hence A is an interval.

Conversely, Let A be an interval.

We claim that A is connected.

Suppose A is not connected.

 $A = A_1 \cup A_2$ where $A_1 \neq \emptyset, A_2 \neq \emptyset, A_1 \cap A_2 = \emptyset$ and A_1, A_2 closed sets in A.

Choose $x \in A_1$ and $z \in A_2$.

Since $A_1 \cap A_2 = \emptyset$, we have $x \neq z$.

Either x < z or z > x. Without loss of generality, we assume that x < z.

Now, since A is an interval, we have $[x, z] \subseteq A$.

i.e.,
$$[x, z] \subseteq A_1 \cup A_2$$
.

∴Every element of [x, z] is either in A_1 or in A_2 .

Now let $y = l.u.b\{[x,z] \cap A_1\}.$

Clearly $x \le y \le z$.

Hence $y \in A$.

Let $\varepsilon > 0$ be given. Then by the definition of l.u.b, there exists $t \in [x, z] \cap A_1$ such that $y - \varepsilon < t \le y$.

$$\therefore (y - \varepsilon, y + \varepsilon) \cap ([x, z] \cap A_1) \neq \emptyset$$

$$\Rightarrow y \in [x, z] \cap A_1$$

$$y \in [x,z] \cap A_1$$
 [since, $[x,z] \cap A_1$ is closed in A]

Again, by the definition of $y, y + \varepsilon \in A_2$ for all $\varepsilon > 0$ such that $y + \varepsilon \le z$

which is a contradiction.

Since $A_1 \cap A_2 \neq \emptyset$,

Hence A is connected.

Theorem 4.4: R is connected.

Proof: By previous theorem, $a \subseteq R$ is connected if it is an interval.

We have $R = (-\infty, \infty)$ is an interval.

∴ R is connected.

SOLVED PROBLEMS

Problem 1: Give an example to show that a subspace of a connected metric space need not be connected.

Solution: We know that R is connected.

Let $A = [1,2] \cup [3,4]$ is a subspace of R.

But $A = [1,2] \cup [3,4]$ is not connected.

∴A subspace of a connected metric space need not be connected.

Problem 2: Prove or disprove: If A and C are connected subsets of a metric space M and if $A \subseteq B \subseteq C$, then B is connected.

Solution:

We disprove the statement by giving a counterexample.

Let
$$A = [1,2]$$
, $B = [1,2] \cup [3,4]$, $C = R$.

Clearly, $A \subseteq B \subseteq C$

Here A and C are connected, but B is not connected.

CONNECTEDNESS AND CONTINUNITY

Theorem 4.5: Let M_1 be a connected metric space. Let M_2 be any metric space.

Let $f: M_1 \to M_2$ be a continuous function. Then $f(M_1)$ is a connected subset of M_2 .

(i.e.) Any continuous image of a connected set is connected.

Proof:

Let $f: M_1 \to M_2$ be a continuous function and M_1 be a connected metric space.

Let $f(M_1) = A$.

So that f is a function from M_1 onto A.

We claim that A is connected.

Suppose A is not connected.

Then there exists a proper non-empty subset B(A) which is both open and closed in A.

 \therefore f⁻¹(B) is a proper non-empty subset of M₁ which is both open and closed in M₁.

Hence, M_1 is not connected, which is a contradiction. [since, M_1 is connected].

∴ A is connected.

Theorem 4.6: INTERMEDIATE VALUE THEOREM

Statement : Let f be a real-value continuous function defined on an interval I. Then f takes every value between any two values it assumes.

Proof: Let f be a real-value continuous function defined on an interval I.

Let a, b \in I and let $f(a) \neq f(b)$.

Then either f(a) < f(b) or f(a) > f(b).

Without loss of generality, we assume that f(a) < f(b).

Let c be such that f(a) < c < f(b).

The interval I is a connected subset of R.

Since f is continuous and I is a connected subset of R f(I) is a connected subset of

R. [Since, the continuous image of a connected set is connected].

We have a subspace of R is connected iff it is an interval.

f(I) is an interval.

Also, f(a), $f(b) \in f(I)$.

Hence, $[f(a), f(b)] \subseteq f(I)$.

$$: c \in f(I)$$

 $\therefore c = f(x) \text{ for some } x \in I.$

Thus, f takes every value between any two values.

SOLVED PROBLEMS

Problem 1: Prove that if f is a non-constant real-valued continuous function on R, then the range of f is uncountable.

Solution: We know that R is connected.

Since f is a continuous function on R, f(R) is a connected subset of R. (Since, Continuous image of a connected set is connected.)

 \therefore f(R) is an interval in R.

Also, since f is a non-constant function, the interval f(R) contains more than one point.

 \therefore f(R) is uncountable.

Thus, the range of f is uncountable.

NOTES:

- 1. Q (the set of rational numbers) is not connected.
- 2. If M is a metric space and $x \in M$, then $\{x\}$ is a connected subset of M.
- 3. A subset of a discrete metric space is connected iff it is a {}.

Exercises:

- 1. Prove that [0,1] is not a connected subset of R with discrete metric.
- 2. Prove that any connected subset of R containing more than one point is uncountable. [Hint : Any interval containing more than one point is uncountable]
- 3. Determine which of the following statements are true and which are false.
 - R is connected (i)
 - (ii) Q is connected.
 - A subspace of a connected space is connected. (iii)
 - (iv) If A and B are connected subsets of a metric space M then AUB is connected.
 - (v) Any discrete metric space having more than one point is disconnected.

CONTRACTION MAPPING THEOREM

Definition: Let (M, d) be a metric space. A mapping T: $M \to M$ is called a contraction mapping if there exists a positive real number $\alpha < 1$ such that

$$d(T(x),T(y)) \leq \alpha d(x,y)$$
 for all $x,y \in M$.

Note: If T is a contraction mapping, then the distance d(T(x), T(y)) is less than the distance d(x, y).

Example 1: Let T: $[0, 1/3] \rightarrow [0, 1/3]$ defined by $T(x) = x^2$ is a contraction mapping.

Solution: Let $x, y \in [0, 1/3]$.

Then
$$x \le 1/3$$
 and $y \le 1/3$.

$$d(T(x), T(y)) = |T(x) - T(y)|$$

$$= |x^2 - y^2|$$

$$= |(x + y)(x - y)|$$

$$\le \left(\frac{2}{3}\right) |x - y|.$$

$$= \left(\frac{2}{3}\right) d(x, y)$$

Here, $\alpha = 2/3 < 1$.

$$\therefore d(T(x), T(y)) \le \left(\frac{2}{3}\right) d(x, y)$$

∴ T is a contraction mapping.

Example 2 : T: R \rightarrow R be defined by $T(x) = \frac{1}{2}x$ is a contraction mapping since $d(T(x),T(y)) = \frac{1}{2}d(x,y).$

 $T: l_2 \rightarrow l_2$ by $T(x) = (x_n / x_n)$ The function defined 2) is a contraction mapping, where $x = (x_n)$.

Solution: Let $x, y \in l_2$.

Then
$$x = (x_n)$$
 and $y = (y_n)$.

$$d(T(x), T(y)) = \left[\sum_{n=1}^{\infty} (T(x) - T(y))^{2}\right]^{1/2}$$

$$= \left[\sum_{n=1}^{\infty} ((1/2)x_{n} - (1/2)y_{n})^{2}\right]^{\frac{1}{2}}$$

$$= \left[\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{2} (x_{n} - y_{n})^{2}\right]^{1/2}$$

$$= \left(\frac{1}{2}\right) \left[\sum_{n=1}^{\infty} (x_{n} - y_{n})^{2}\right]^{1/2}$$

$$= (1/2) d(x, y)$$

- d(T(x), T(y)) = (1/2) d(x, y)
- ∴ T is a contraction mapping.

Example 4: Let T: $[0,1] \rightarrow [0,1]$ be a differentiable function. If there is a real number α with 0 $< \alpha < 1$ such that $|T'(x)| \le \alpha$ for all $x \in [0,1]$, where T' is the derivative of T, then T is a contraction mapping.

Solution: Let $x, y \in [0,1]$ with x < y.

By Mean Value Theorem,

$$T(y) - T(x) = (y - x) T'(x)$$
$$|T(y) - T(x)| = |y - x| |T'(x)|$$
$$\le \alpha |y - x|$$

$$\therefore d(T(y),T(x)) \le \alpha d(y,x)$$
 where $0 < \alpha < 1$.

THEOREM 4.7: Let T: $M \to M$ be a contraction mapping. Then T is uniformly continuous on M.

Proof: By the definition of a contraction mapping,

$$d(T(x),T(y)) \le \alpha d(x,y)$$
 where $\alpha < 1$.
 $\therefore d(T(x),T(y)) < d(x,y)$
Let $\varepsilon > 0$ be given.

Choose $\delta = \varepsilon$.

$$d(x,y) < \delta \Rightarrow d(T(x),T(y)) < \varepsilon$$
.

: T is uniformly continuous on M.

CONTRACTION MAPPING THEOREM

Statement : Let (M, d) be a complete metric space.Let T: $M \to M$ be a contraction mapping. Then there exists a unique point x in M such that T(x) = x.

(i.e.) T has exactly one fixed point.

Proof: Let x_0 be the arbitrary point in M. Let $x_1 = T(x_0)$, $x_2 = T(x_1)$, ..., $x_n = T(x_{n-1})$.

We claim that, (x_n) is a Cauchy sequence in M.

Since, T is the contraction mapping, there exists a positive real number α , such that $0 < \alpha < 1$ and $d(T(x), T(y)) < \alpha d(x, y)$.

$$\therefore d(x_n, x_{n+1}) = d(T(x_{n-1}), T(x_n))$$

$$\leq \alpha d(x_{n-1}, x_n)$$

$$\leq \alpha^2 d(x_{n-2}, x_{n-1})$$

$$\leq \alpha^3 d(x_{n-3}, x_{n-2})$$

$$\vdots$$

$$\leq \alpha^n d(x_0, x_1).$$

Since $0 < \alpha < 1$, the sequence $(\alpha^n) \rightarrow 0$.

 \therefore Given $\varepsilon > 0$, there exists a positive integer n_1 such that $|(\alpha^n / (1 - \alpha^n + 1))|$ (α)) $d(x_0, x_1)$ | $< \varepsilon$ for all $n \ge n_1$.

$$\therefore$$
 (2) \Rightarrow $d(x_n, x_m) \leq \varepsilon$ for all $m, n \geq n_1$.

Hence (x_n) is a Cauchy sequence in M.

Since M is complete, there exists $x \in M$ such that $((x_n)) \to x$.

Also, T is continuous.

Hence, $(T(x_n)) \to T(x)$.

Thus, T(x) = x.

Hence, x is the fixed point of T.

Now, to prove the uniqueness:

Suppose, there exists $y \in M$ such that $y \neq x$ and T(y) = y.

Then,
$$d(x,y) = d(T(x),T(y))$$

 $\leq \alpha d(x,y)$

$$\Rightarrow d(x,y) - \alpha d(x,y) \leq 0$$

$$\Rightarrow d(x,y)(1-\alpha) \leq 0$$

$$Clearly, d(x,y) > 0.$$

$$Also, \alpha < 1$$

$$\therefore 0 < 1 - \alpha.$$

$$i.e. (1-\alpha) > 0.$$

 $d(x,y)(1-\alpha) > 0$, which is a contradiction.

$$\therefore y = x$$

Hence, x is the unique fixed point of T.

UNIT V

COMPACTNESS

Compact Metric Spaces

Definition : Let M be a metric a metric space. A family of open sets $\{G_{\alpha}\}$ in M is called an **open cover** for M if $UG_{\alpha} = M$.

A subfamily of $\{G_{\alpha}\}$ which itself is an open cover is called a **subcover**.

A metric space M is said to be **compact** if every open cover for M has a finite subcover.

i.e., for each family of open sets $\{G_{\alpha}\}$ such that $UG_{\alpha} = M$, there exists a finite subfamily $\{G_{\alpha 1}, G_{\alpha 2}, ..., G_{\alpha n}\}$ such that $\bigcup_{i=1}^{n} G_{\alpha i} = M$.

Example 1: R with usual metric is not compact.

Proof: Consider the family of open intervals $\{(-n, n): n \in \mathbb{N}\}$

This is a family of open sets in **R**.

Clearly $\bigcup_{n=1}^{\infty} (-n, n) = \mathbf{R}$

 \therefore {(-n, n)}: n \in N} is an open cover for **R** and this open cover has no finite subcover.

 \therefore **R** is not compact.

Example 2: (0,1) with usual metric is not compact.

Proof: Consider the family of open intervals $\{(\frac{1}{n}, n): n=2,...\}$

Clearly
$$\bigcup_{n=1}^{\infty} \left(\frac{1}{n}\right) = (0,1)$$

 $\{(\frac{1}{n},1): n=2,...\}$ is an open cover for (0,1) and this open cover has a finite subcover.

Hence (0,1) is not compact.

Example 3: [0,1) with usual metric is not compact.

Proof: Consider the family of open interval $\{[0, n): n=1,2,...\}$

Clearly
$$\bigcup_{n=1}^{\infty} [0, n) = [0, \infty)$$

 \therefore {[0, n]: n= 1,2, ...} is an open cover for [0, ∞) and this open cover has no finite subcover.

Hence $[0,\infty)$ is not compact.

Example 4: Let M be an infinite set with discrete metric. Then M is not compact.

Proof: Let $x \in M$. Since M is discrete metric space $\{x\}$ is open in M.

Also
$$\bigcup x \in M \{x\} = M$$

Hence $\{\{x\}\}$ such that $x \in M$ is an open cover for M and since M is infinite, this open cover has no finite subcover.

Hence M is not compact.

Theorem 5.1: Let M be a metric space. Let $A \subseteq M$. Then A is compact iff given a family of open sets $\{G_{\alpha}\}$ in M such that $\bigcup G_{\alpha} \supseteq A$ there exists a subfamily $\{G_{\alpha 1}, G_{\alpha 2}, ..., G_{\alpha n}\}$ such that $\bigcup_{i=1}^{n} G_{\alpha i} \supseteq A$.

Proof: Assume that A be a compact subset of M.

Let $\{G_{\alpha}\}\$ be a family of open sets in M such that $\bigcup G_{\alpha} \supseteq A$.

To prove: there exist a subfamily $\{G_{\alpha 1}, G_{\alpha 2}, ..., G_{\alpha n}\}$ such that $\bigcup_{i=1}^{n} G_{\alpha i} \supseteq A$.

Since
$$UG_{\alpha} \supseteq A$$
 we get $(UG_{\alpha}) \cap A = A$

$$(UG_{\alpha} \cap A) = A.$$

Also, $G_{\alpha} \cap A$ is open in A.

 \therefore The family of $\{G_{\alpha} \cap A\}$ is open cover for A.

But A is compact. \therefore This open cover has a finite subcover (say) $\{G_{\alpha 1} \cap A, G_{\alpha 2} \cap A, ..., G_{\alpha n} \cap A\}$ such that $\bigcup_{i=1}^{n} (G_{\alpha i} \cap A) = A$

$$\therefore (\bigcup_{i=1}^{n} (G_{\alpha i}) \cap A = A$$

$$:: \bigcup_{i=1}^n G_{\alpha i} \supseteq A$$

Conversely assume that a family of opensets $\{G_{\alpha}\}$ in M such that $UG_{\alpha} \supseteq A$ there exist a subfamily.

To Prove: A is compact.

Let $\{H_{\alpha}\}$ be an open cover for A.

 \therefore Each H_{α} is open in A.

 \therefore H_{α} = G_{α} \cap *A* where G_{α} is open in M.

We have, $\cup H_{\alpha} = A$

$$U(G_{\alpha} \cap A) = A$$

ie, U $G_{\alpha} \cap A = A$

 $\therefore UG_{\alpha} \supseteq A$

Hence by hypothesis there exist a finite subfamily.

 $\{G_{\alpha 1},\,G_{\alpha 2},\,...,\,G_{\alpha n}\} \text{ such that } \bigcup_{\,i\,=\,1}^n G_{\alpha i} \underline{\supset} \,A.$

$$\therefore (\bigcup_{i=1}^n G_{\alpha i}) \cap A = A$$

$$\therefore \bigcup_{i=1}^{n} (G_{\alpha i} \cap A) = A$$

$$\therefore \bigcup_{i=1}^n H\alpha_i = A$$

:. There $\{H_{\alpha 1},\, H_{\alpha 2},\, ...,\, H_{\alpha n}\}$ is a finite subcover of the open cover H_{α}

∴ A is compact.

Theorem 5.2: Any compact subset A of a metric space M is bounded.

Proof: Given, $A \subseteq M \& A$ is compact

To Prove: A is bounded

Let $x_0 \in A$

Consider {B (x_0 , n): $n \in N$ }

$$\therefore \bigcup_{n=1}^{\alpha} B(x_0, n) \supseteq A$$

∴ {B (x_0, n) : $n \in N$ } is an open cover for A.

But A is compact

.. This open cover has a finite subcover

{B (x_0, n_1) , B (x_0, n_1) , ..., B (x_0, n_k) } such that $\bigcup_{i=1}^k B(x_0, n_i) \supseteq A$

Let $n_0 = \max \{n_1, n_2, ..., n_k\}$

 $\therefore \bigcup_{i=1}^{k} B(x_0, n_i) = B(x_0, n_0)$

Hence B $(x_0, n_0) \supseteq A$

We know that B (x_0, n_0) is bounded set and a subset of a bounded set is bounded.

Hence A is bounded.

Note: The converse of the above theorem is not true.

ie, A bounded set need not be a compact.

For example (0,1) is a bounded subset of R, but (0,1) is not compact.

Theorem 5.3: Any compact subset A of a metric space (M, d) is closed.

Proof: Given that A is a compact subset of a metric space M.

To Prove: A is closed.

ie, To prove Ac is open

Let $y \in A^c \& Let x \in A$

Then $x \neq y$

$$\therefore d(x, y) = r_x > 0$$

Also, we have B $(x, \frac{rx}{2}) \cap B(y, \frac{rx}{2}) = \emptyset$

Now consider the collection have $\{B(x, \frac{rx}{2}): x \in A\}$

Clearly $\bigcup_{x \in A} B(x, \frac{rx}{2}) \supseteq A$

Since A is compact, there exist a finite number of such open ball say B $(x_1, \frac{r_{x_1}}{2})$, B $(x_2, \frac{r_{x_2}}{2})$,

..., B
$$(x_n, \frac{r_x}{2})$$
 such that $\bigcup_{i=1}^n B(x_i, r_{xi/2}) \supseteq A$

Now let $V_y = \bigcap_{i=1}^n B(y, r_{xi/2})$

Now let $V_y = i=1$ nB(xi, rx $\square/2$)

Clearly, V_y is an open set containing y.

Since B $(x, \frac{rx}{2}) \cap B(y, \frac{rx}{2}) = \emptyset$ we have $V_y \cap B(x, r_{xi/2})$ for each i = 1, 2, ..., n

$$\therefore V_{y} \cap \left[\bigcup_{i=1}^{n} B(x, r_{xi/2}) \right] = \emptyset$$

$$\therefore V_v \cap A = \emptyset$$

$$\therefore V_v \subseteq A^c$$

$$\therefore \bigcup_{v \in A^c} V_v = A^c$$

Since each V_y is open we have arbitrary union of open set is open

$$: \bigcup_{v \in A^c} V_v$$
 is open.

 \therefore A^c is open

Hence A is closed.

Note 1 : The converse of the above theorem is not true.

For example $[0,\infty)$ is a closed subset of R but it is not compact. From theorem (5.2) & (5.3) we have any compact subset of a metric space is closed and bounded.

Theorem 5. 4: A closed subspace of a compact metric space is compact.

Proof:Let M be a compact metric space.

Let A be a non-empty closed subset of M.

We claim that A is compact.

Let $\{G_{\alpha}: \alpha \in I\}$ be a family of open sets in M such that $\bigcup_{\alpha \in I} G_{\alpha} \supseteq A$

$$A^{c} \cap [\bigcup_{\alpha \in I} G_{\alpha}] = M$$

Since A is closed A^c is open

∴ $\{G_{\alpha}: \alpha \in I\} \cup A^{c}$ is an open cover for M

Since M is compact, this open cover has a finite subcover $G_{\alpha 1}, G_{\alpha 2}, ..., G_{\alpha n}$, A^c such that

$$\bigcup_{i=1}^n G_{\alpha i} \cup A^c = M$$

$$:: \bigcup_{i=1}^n G_{\alpha i} \supseteq A$$

∴ A is compact.

Compact Subsets of R

Theorem 5.5 (Heine Borel Theorem): Any closed interval [a, b] is a compact subset of **R**.

Proof: Let $\{G_\alpha : \alpha \in I\}$ be a family of open sets in M such that $\bigcup_{\alpha \in I} G_\alpha \supseteq [a, b]$

We claim that [a, b] is a compact subset of R.

Let $S = \{x : x \in [a, b]\}$ and [a, x] can be covered by finite number of $G_{\alpha's}$.

Clearly $a \in S$ and hence $S \neq \emptyset$.

Also, S is bounded above by b.

Let 'c' denote the least upper bound of S.

Clearly, $c \in [a, b]$

 $\therefore c \in G_{\alpha 1}$ for some α_1

Since $G_{\alpha 1}$ is open, there exist $\varepsilon > 0$ such that $(c-\varepsilon, c+\varepsilon) \subseteq G_{\alpha 1}$

Choose $x_1 \in [a, b]$ such that $x_1 < c$ and $[x_1, c] \subseteq G_{\alpha 1}$

Now, since $x_1 < c$, $[a,x_1]$ can be covered by finite number of $G_{\alpha's}$.

These finite number of $G_{\alpha's}$ together with $G_{\alpha 1}$ covers [a, c]

∴ By definition of S, $c \in S$.

Now we claim that c=b

Suppose $c \neq b$. Then choose $x_2 \in [a, b]$ such that $x_2 > c$ and $[c, x_2] \subseteq G_{\alpha 1}$

As before $[a, x_2]$ can be covered by finite number of $G_{\alpha's}$.

Hence $x_2 \in S$

But $x_2 > c$ which is a contradiction since c is the lub of S.

∴ c=b

 \therefore [a, b] can be covered by finite number of $G_{\alpha's}$.

 \therefore [a, b] is a compact subset of R.

Theorem 5.6: A subset A of R is a compact iff A is closed and bounded.

Proof: Assume that A is compact.

To prove: A is closed and bounded.

By theorem 5.2, We have A is bounded

By theorem 5.3, We have A is closed

Conversely, assume that a subset of R which is closed and bounded.

To prove: A is compact

Let A be a subset of R.

Since A is bounded we can find a closed interval [a, b] such that $A \subseteq [a, b]$

Since A is closed in R, A is closed in [a, b] also.

Thus, A is closed subset of a compact metric space [a, b].

Hence by theorem 5.4, A is compact.

EQUIVALENT CHARACTERISATION FOR COMPACTNESS

Definition : A family τ of subset of a set M is said to have the finite intersection property if any finite subfamily of τ has non-empty intersection.

Example : In R the family of closed intervals $\tau = \{[-n, n] : n \in \mathbb{N}\}$ has finite intersection property.

Theorem 5.7: A metric space M is compact iff any family of closed sets with finite intersection property has non-empty intersection.

Proof: Assume that M is compact.

Let $\{A_{\alpha}\}$ be a family of closed subsets of M with finite intersection property.

We claim that $\cap A_{\alpha} \neq \emptyset$

Suppose $\cap A_{\alpha} = \emptyset$

Then $(\cap A\alpha)^c = \emptyset^c$

 $UA_{\alpha}^{c} = M$

Also, since each A_{α} is closed A_{α}^{c} is open

 $\therefore \{A_{\alpha}^{c}\}$ is an open cover for M.

Since M is compact this open cover has a finite subcover say A_1^c , A_2^c , ..., A_n^c

$$\therefore \bigcup_{i=1}^n A_i^c = M$$

$$\therefore (\bigcap_{i=1}^n A_i)^c = M$$

$$[(\bigcap_{i=1}^n A_i)^c]^c = M^c$$

$$\bigcap_{i=1}^n A_i = \emptyset$$

which is the contradiction to the finite intersection property

$$\therefore \cap A_{\alpha} \neq \emptyset$$

Conversely assume that each family of closed sets in M with finite intersection property has non-empty intersection.

To prove M is compact

Let G_{α} such that $G_{\alpha} \in I$ be an open cover for M

$$\therefore \bigcup_{\alpha \in I} G_{\alpha} = M$$

$$\therefore (\bigcup_{\alpha \in I} G_{\alpha})^{c} = M^{c}$$

$$\therefore \bigcap_{\alpha \in I} G_{\alpha}^{c} = \emptyset$$

Since G_{α} is open $G_{\alpha}^{\ c}$ is closed for each α .

 $\therefore \tau = \{G_{\alpha}^{c}: \alpha \in I\}$ is a family of closed sets whose intersection is empty.

Hence by hypothesis, this family of closed sets does not have the finite intersection property.

Hence there exist a finite subcollection of τ say $\{G_1^{c_i}G_2^{c_i}, ..., G_n^{c_i}\}$ such that

$$\bigcap_{i=1}^n G_i = \emptyset$$

ie.,
$$(\bigcup_{i=1}^n G_i)^c = \emptyset$$

ie.,
$$\bigcup_{i=1}^n G_i = M$$

 $\therefore \{G_1, G_2, ..., G_n\}$ is a finite subcover of the given open cover.

Hence M is compact.

Definition: A metric space M is said to be totally bounded if for every ε>0 there exist a finite number of elements x_1 , x_2 , ..., $x_n \in M$ such that B $(x_1, \varepsilon) \cup$ B $(x_2, \varepsilon) \cup$, ..., \cup B $(x_n, \varepsilon) = M$.

A non- empty subset A of a metric space M is said to be totally bounded if the subspace A is a totally bounded metric space.

Theorem 5.8: Any compact metric space is totally bounded.

Proof: Let M be a compact metric space.

Then $\{B(x,\varepsilon):x\in M\}$ is an open cover for M.

Since M is compact this open cover has a finite subcover say B (x_1, ε) , B (x_2, ε) , ...

B
$$(x_n, \varepsilon)$$
 such that $\bigcup_{i=n}^n B(x_i, \varepsilon) = M$

ie., B
$$(x_1, \varepsilon)$$
 U B (x_2, ε) U..... U B (x_n, ε) = M.

Hence M is totally bounded.

Theorem 5.9: Let A be a subset of a metric space M. If A is totally bounded, then A is bounded.

Proof: Let A be a totally bounded subset of M.

Let ε >0 be given, then there exist a finite number of points $x_1, x_2, \dots, x_n \in A$ such that B $(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \dots \cup B(x_n, \varepsilon) = A$ where B (x_i, ε) is an open ball in A.

Further we know that an open ball is a bounded set.

Thus, A is the union of a finite number of bounded sets and hence A is bounded.

Note: The converse of the above theorem is not true. ie., a bounded set need not be totally bounded.

Example: Let M be an infinite set with discrete metric.

Clearly M is bounded

Now B(
$$x, \frac{1}{2}$$
) = { x }

Since M is infinite M cannot be written as the union of a finite number of open balls B($x, \frac{1}{2}$).

Then M is not totally bounded.

Definition : Let x_n be a sequence in a metric space M. Let $n_1 < n_2 < ... < n_k < ...$ be an increasing sequence of positive integers. Then (x_{nk}) is called the subsequence of (x_n)

Theorem 5.10 : A metric space (M, d) is totally bounded iff every sequence in M has the Cauchy's subsequence.

Proof: Suppose every sequence in M has a Cauchy subsequence.

We claim that M is totally bounded

Let $\varepsilon > 0$ be given

Choose $x_1 \in M$

If B $(x_1, \varepsilon) \neq M$, choose $x_2 \in M$ -B (x_1, ε) so that D $(x_1, x_2) \geq \varepsilon$

Now B $(x_1, \varepsilon) \cup B(x_2, \varepsilon) = M$ then the proof is complete.

If not choose $x_3 \in M$ - [B $(x_1, \varepsilon) \cup B(x_2, \varepsilon)$] and so on.

Suppose this process does not stop at a finite stage.

Then we obtain a sequence x_1, x_2, \dots, x_n , ... such that $d(x_n, x_m) \ge \varepsilon$ if $n \ne m$

Clearly this sequence (x_n) cannot have a Cauchy subsequence which is a contradiction.

Hence the above process stops at a finite stage, and we get a finite set of points

$$x_1$$
, x_2 , ..., x_n , such that $M = B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \ldots \cup B(x_n, \varepsilon)$

... M is totally bounded.

Conversely suppose M is totally bounded.

We claim that every sequence in M has a Cauchy subsequence.

Let
$$S_1 = \{x_{11}, x_{12}, x_{13}, \dots x_{1n}\}$$
 be a sequence in M.

If one term of the sequence is infinitely repeated, then S₁ contains a constant subsequence which is obviously a Cauchy subsequence.

Hence, we assume that no term of S_1 is infinitely repeated so that the range S is infinite.

Now, Since M is totally bounded M can be covered by a finite number of open balls of radius

Hence at least one of these balls must contain an infinite number of terms of the sequence S1.

 \therefore S₁ contains a subsequence S₂ = $(x_{21}, x_{22}, x_{23}, \dots x_{2n}, \dots)$ all terms of which lie within an open ball of radius $\frac{1}{2}$

Similarly, S_2 contains a subsequence $S_3 = \{x_{31}, x_{32}, x_{33}, \dots x_{3n}, \dots\}$ all terms of which lie within an open ball of radius $\frac{1}{3}$

We repeat this process of forming successive subsequence and finally we take the diagonal sequence.

$$S = (x_{11}, x_{22}, x_{33}, ... x_{nn}, ...)$$

We claim that S is a Cauchy subsequence of S₁

If m>n both x_{mm} and x_{nn} lies with an open ball of radius $\frac{1}{n}$

$$\therefore$$
 d $(x_{\text{mm}}, x_{\text{nn}}) < \frac{2}{n}$

Hence
$$d(x_{mm}, x_{nn}) < \epsilon \text{ if } n, m > \frac{2}{\epsilon}$$

This shows that S is a Cauchy subsequence of S₁

Thus, every subsequence in M contains a Cauchy subsequence.

Corollary: A non-empty subset of totally bounded set is totally bounded.

Proof: Let A be totally bounded subset of a metric space M.

Let B be a non-empty subset of A.

To prove: B is totally bounded.

It is enough to prove that every sequence has a Cauchy subsequence

Let (x_n) be a sequence in B.

 \therefore (x_n) is a sequence in A.

Since A is totally bounded (x_n) has a Cauchy subsequence.

Thus, every sequence in B has a Cauchy subsequence.

:. B is totally bounded.

Definition : A metric space M is said to be sequentially compact if every sequence in M has a convergent sub-sequence.

Theorem 5.11: Let be a Cauchy sequence in a metric space. If (x_n) has a subsequence (x_{nk}) converging to x, then converges to x.

Proof: Let $\varepsilon > 0$ be given

Since (x_n) is a Cauchy sequence, there exists a positive integer m_1 such that $d(x_n, x_m) < \frac{1}{2} \epsilon$ for all $n, m \ge m_1 \dots (1)$

Also, since $(x_{nk}) \rightarrow x$, there exists a positive integer m_2 such that

$$d(x_{nk},x)<\frac{1}{2}\varepsilon$$
 for all $n_k \ge m_2$ (2)

Let $m_0 = \max \{m_1, m_2\}$ and fix $n_k \ge m_0$

Then
$$d(x_n,x) \le d(x_n,x_{nk}) + d(x_{nk},x_n)$$

$$<\!\!\frac{\varepsilon}{2}\!+\!\!\frac{\varepsilon}{2} \text{ for all } n_k\!\!\geq\!\! m_0$$

$$= \varepsilon \text{ for all } n_k \ge m_0 :: (x_n) \to x$$

Theorem 5. 12: In a metric space M, the following are equivalent.

- (i) M is compact.
- (ii) Any infinite subset of M has a limit point.
- (iii) M is sequentially compact.
- (iv) M is totally bounded and complete.

Proof: (i) \Rightarrow (ii).

Assume that M is compact

To prove: Any finite subset of M has a limit point.

Let A be an infinite subset of M

Suppose A has no limit point in M

Let, $x \in M$

Since x is not a limit point of A there exists an open ball B (x,r_x) such that

B
$$(x,r_x) \cap (A-\{x\}) = \emptyset$$

$$B(x,r_x) \cap A = \begin{cases} \{x\}, if \ x \in A \\ \emptyset, if \ x \not\in A \end{cases}$$

Now $\{B(x,r):x\in M\}$ is an open cover for M

Also, each B (x,r_x) cover at most one point of the finite set A.

Hence this open cover cannot have a finite subcover which is a contradiction to (i)

Hence A has atleast one limit point.

(ii)⇒(iii)

Assume that: Any finite subset of M has a limit point.

To prove: M is sequentially compact.

Let (x_n) be a sequence in M.

If one term of the sequence is infinitely repeated, then (x_n) contains a constant subsequence which is convergent.

Otherwise (x_n) has an infinite number of terms.

By hypothesis, this infinite set has a limit point, say x.

We know that "for any r>0, the open ball B (x,r) contains infinite number of terms of the sequence (x_n) ."

Now we choose a positive integer n_1 , such that $x_{n1} \in B(x, 1)$

Then choose $n_2 > n_1$ such that $x_{n_2} \in B(x, \frac{1}{2})$

In general, for each positive integer k choose n_k such that $n_k > n_{k1}$ and $x_{nk} \in B$ $(x, \frac{1}{k})$

Clearly, (x_{nk}) is a subsequence of (x_n) .

Also, d
$$(x_{nk}, x) < \frac{1}{k}$$

$$\therefore (\chi_{nk}) \to \chi$$

Thus (x_{nk}) is a convergent subsequence of (x_n) .

Hence M is sequentially compact.

Assume that M is sequentially compact.

To prove: M is totally bounded and complete.

By hypothesis, every sequence in M has a convergent subsequence.

But every convergent sequence is a Cauchy sequence.

Thus, every sequence in M has a Cauchy sequence.

By theorem, M is totally bounded.

Now, we prove that M is complete.

Let (x_n) be a Cauchy sequence in M.

By hypothesis, (x_n) contains a convergent subsequence in (x_{nk})

Let
$$(x_{nk}) \rightarrow x$$
 (say)

Now by theorem $(x_n) \rightarrow x$

: M is complete.

 $(iv) \Rightarrow (i)$

Assume that M is totally bounded and complete.

To prove: M is compact.

Suppose M is not compact.

Then there exists an open cover $\{G_{\alpha}\}$ for M which has no finite subcover.

Let
$$r_n = \frac{1}{2^n}$$

Since, M is totally bounded, M can be covered by a finite number of open balls of radius r₁.

Since M cannot be covered by a finite number of $G_{\alpha's}$ at least one of these open balls, say

B (x_1, r_1) cannot be covered by a finite number of $G_{\alpha's}$.

Now B (x_1, r_1) is totally bounded.

Hence as before we can find $x_2 \in B$ (x_1 , r_1) such that B (x_2 , r_2) cannot be covered by a finite number of $G_{\alpha's}$.

Proceeding like this we obtain a sequence (x_n) in M such that B (x_n, r_n) cannot be covered by a finite number of $G_{\alpha's}$ and $x_{n+1} \in B$ (x_n, r_n) for all n.

Now,
$$d(x_n, x_{n+p}) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$< r_n + r_{n+1} + \dots + r_{n+p+1}$$

$$=\frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+p-1}}$$

$$= \frac{1}{2^{n-1}} \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^p} \right)$$

$$<\frac{1}{2^{n-1}}$$

 \therefore (x_n) is a Cauchy sequence in M.

Since M is complete, there exists $x \in M$ such that B $(x,\varepsilon)\subseteq G_{\alpha}$ (1)

We have
$$(x_n) \rightarrow x$$
 and $(r_n) = (\frac{1}{2^n}) \rightarrow 0$

Hence, we find a positive integer n_1 such that $d(x_n, x) < \frac{1}{2} \varepsilon$ and $r_n < \frac{1}{2} \varepsilon$ for all $n \ge n_1$

We claim that B $(x_n, r_n) \subseteq B(x, \varepsilon)$

Let $y \in B(x_n, r_n)$

$$\therefore$$
 d $(y,x_n) < r_n < \frac{1}{2} \varepsilon$

Now, d $(y, x) \le d(y, x_n) + d(x_n, x)$

$$\leq \frac{1}{2}\epsilon + \frac{1}{2}\epsilon$$

 $=\epsilon$

$$\therefore y \in B(x,\varepsilon)$$

$$\therefore$$
 B $(x_n, r_n)\subseteq B$ $(x, \varepsilon)\subseteq G_\alpha$ [by (1)]

Thus B (x_n, r_n) is covered by the single set G_α which is a contradiction.

Since B (x, r_n) cannot be covered by a finite number of G_{α 's.

Hence M is compact.

Theorem 5.13 : R with usual metric is complete.

Proof: Let (x_n) be a Cauchy sequence in R.

Then (x_n) is a bounded sequence and hence is contained in a closed interval [a, b].

Now [a, b] is compact and hence is complete.

Hence (x_n) converges to some point $x \in [a, b]$

Thus, every Cauchy sequence (x_n) in R converges to some point x in R and hence R is complete.

Solved Problems

Problem 1: Given an example of a closed and bounded subset of l₂ which is not compact.

Solution:

Consider
$$0 = (0,0,0,\ldots) \in l_2$$

Consider the closed ball B [0,1]

Clearly, B [0,1] is bounded.

Also, B [0,1] is closed set.

We claim that B [0,1] is not compact.

Consider $e_1 = (1,0,0,...)$.

$$e_2 = (0,1,0...); e_n = (0,0,0...1,0...)$$

Now, $d(0, e_n) = 1$ and hence $e_n \in B[0,1]$ for all n

Thus (e_n) is a sequence in B [0,1]

Also, d (e_n, e_m) =
$$\sqrt{2}$$
 if n \neq m.

Hence the sequence (e_n) does not contain a Cauchy subsequence.

 \therefore B [0,1] is not totally bounded.

 \therefore B [0,1] is not compact.

Problem 2: Prove that any totally bounded metric space is separable.

Solution: Let M be a totally bounded metric space.

For each natural number n.

Let
$$A_n = \{ x_{n1}, x_{n2}, \dots x_{nn} \}$$
 be a subset of M such that $\bigcup_{i=1}^k B(x_{ni}, \frac{1}{n}) = M \dots (1)$

Let
$$A = \bigcup_{n=1}^{\infty} A_n$$

Since each A_n is finite, A is countable subset of M.

We claim that A is dense in M.

Let B (x,ε) be any open ball.

Choose a natural number n such that $\frac{1}{n} < \varepsilon$

Now, $x \in B(x_{ni}, \frac{1}{n})$ for some i [by (1)]

$$\therefore d(x_{ni}, x) < \frac{1}{n} < \varepsilon$$

$$\therefore (x_{ni},) \in B(x,\varepsilon)$$

$$\therefore$$
 B $(x,\varepsilon) \cap A \neq \emptyset$

Thus, every open ball in M has non-empty intersection with A.

Hence by theorem, A is dense in M.

Thus, A is a countable dense subset of M.

Hence M is separable.

Problem 3: Prove that any bounded sequence in R has a convergent subsequence.

Solution: Let (x_n) be a bounded sequence in R.

Then there exists a closed interval [a, b] such that $x_n \in [a, b]$ for all n.

Thus (x_n) is sequence in the compact metric space [a, b]

Hence by theorem, (x_n) has a convergent subsequence.

Problem 4: Prove that the closure of a totally bounded set is totally bounded.

Solution: Let. A be a totally bounded Subset of a metric space M.

We claim that \overline{A} is totally bounded.

We shall show that every sequence in A contains a Cauchy subsequence.

Let (x_n) be a sequence in \overline{A} .

Let $\varepsilon > 0$ be given

Then since the $x_n \in \overline{A}$ $B(x_{n,\frac{1}{3}}\varepsilon) \cap A \neq \emptyset$

Choose $y_n \in B(x_n, \frac{1}{3}\varepsilon) \cap A$

$$\therefore d(y_n, x_n) < \frac{1}{3} \epsilon \dots (1)$$

Now, (y_n) is totally bounded (y_n) contains a Cauchy subsequence say (y_{nk}) .

Hence there exists a natural number m such that

$$d(y_{ni}, x_{nj}) < \frac{1}{3} \epsilon \text{ for all } n_i, n_j \ge m \dots (2)$$

$$d(x_{ni}, y_{nj}) < d(x_{ni}, y_{n}) + d(y_{ni}, y_{nj}) + d(y_{nj}, x_{nj})$$

$$<\!\!\frac{1}{3}\epsilon+\frac{1}{3}\epsilon+\frac{1}{3}\epsilon=\epsilon \text{ for all } n_i,\,n_j\:[\text{ by (1) and (2)}]$$

Hence (x_{nk}) is a Cauchy subsequence of x_n .

 $\therefore \overline{A}$ is totally bounded.

Problem 5 : Lot A be a totally bounded subset of R. Prove that \overline{A} is compact.

Solution: Since A is totally bounded \overline{A} is also totally bounded.

Also, since \overline{A} is a closed subset of Rand R is complete \overline{A} .is complete.

Hence \overline{A} is to totally bounded and complete.

 $\therefore \overline{A}$ is compact.

COMPACTNESS AND CONTINUITY

Theorem 5.14 : Let f be a continuous mapping from a compact metric space M_1 to any metric space M_2 . Then f (M_1) is compact.

ie, continuous image of a compact metric space is compact.

Proof: Without loss of generality, we assume that $f(M_1) = M_2$

Let $\{G_{\alpha}\}$ be a family open set in M_2 such that $UG_{\alpha}=M_2$

$$\therefore UG_{\alpha} = f(M_1)$$

$$\therefore f^{-1}UG_{\alpha} = M_1$$

$$\therefore \mathsf{U} \; \mathsf{f}^{\text{-}1} \; (\mathsf{G}_\alpha) = \mathsf{M}_1$$

Also, since f is continuous f-1 (G $_{\alpha}$) is open in M $_{1}$ for each α

 \therefore {f-1 (G_{\alpha})} is an open cover for M₁.

Since M_1 is compact this open cover has a finite subcover say $f^{-1}(G_{\alpha 1}), \ldots f^{-1}(G_{\alpha n})$

$$\therefore f^{\text{-}1}\left(G_{\alpha 1}\right)\,Uf^{\text{-}1}\left(G_{\alpha 2}\right)\,U\,\,\ldots.\,\,Uf^{\text{-}1}\left(G_{\alpha n}\right)=M_{1}$$

$$\therefore$$
 f-1($\bigcup_{i=1}^n G_{\alpha i}$)= M_1

$$\therefore \bigcup_{i=1}^n G_{\alpha i} = f(M_1) = M_2$$

 $G_{\alpha 1}, G_{\alpha 2}, \ldots G_{\alpha n}$ is an open cover for M_2

Thus, the given open cover $\{G_{\alpha}\}$ for M_2 has a finite subcover.

 \therefore M₂ is compact.

Corollary 1 : Let f be a continuous map from a compact metric space M_1 into any metric M_2 . Then f (M_1) is closed and bounded.

Proof: $f(M_1)$ is compact and hence is closed and bounded.

Corollary 2: Any continuous real valued function f defined on a compact metric space is bounded and attains its bounds.

Proof: Let M be a compact metric space.

Let $f: M \to R$ be a continuous real valued function.

Then f (M) be a compact subset of R.

: f (M) is closed and bounded subset of R

Since f (M) is bounded f is a bounded function.

Now, let a = lub of f(M) &

$$b = glb of f(M)$$

By definition of lub & glb a, $b \in \overline{f(M)}$ but f(M) is closed.

Hence f (M) =
$$\overline{f(M)}$$

$$\therefore$$
 a, b \in f (M)

 \therefore There exists $x, y \in M$ such that f(x) = a & f(y) = b

Hence f attains its bounds.

Note : Corollary 2 is not true if M is not compact.

The function f: (0, 1) \rightarrow R defined by f (x) = $\frac{1}{x}$ is continuous but not bounded.

Theorem 5.15: Any continuous mapping f defined on a compact metric space (M_1, d_1) into any other metric space (M_2, d_2) is uniformly continuous on M_1 .

Proof: Let $\varepsilon > 0$ be given

Let $x \in M_1$

Since f is continuous at x, there exist $\delta_x > 0$ such that $d_1(y, x) < \delta_x$

$$\Rightarrow d_2((f(y), f(x)) < \frac{\varepsilon}{2} \dots (1)$$

 $\{B\ (x,\,\delta_{\frac{x}{2}}):\,x\!\in\!M_1\}$ is an open cover for M_1 .

Since M_1 is compact this open cover has a finite subcover say $B(x, \delta_{\frac{x_1}{2}}), ..., B(x, \delta_{\frac{x_n}{2}})$

Let
$$\delta = \min \left\{ \delta_{\frac{x_1}{2}}, \delta_{\frac{x_2}{2}}, ..., \delta_{\frac{x_n}{2}} \right\}$$

We claim that $d_1(p, q) < \delta \Rightarrow d_2((f(p), f(q)) < \epsilon$

Let $p \in B$ $(x_i, \delta_{\underline{x}\underline{i}})$ for some $1 \le i \le n$

$$\therefore d_1(p,x_i) < \delta_{\underline{x}\underline{i}}$$

$$\therefore d_2 (f (p), f (x_i) < \frac{\varepsilon}{2} \dots (2) [from (1)]$$

Now, $d_1(q, x_i) \le d_1(p, q) + d_1(p, x_i)$

$$<\delta+\delta_{\frac{xi}{2}}$$

$$<\delta_{\underline{x}\underline{i}}+\delta_{\underline{x}\underline{i}}$$

$$=\delta_{xi}$$

Thus $d_1(q, x_i) < \delta_{xi}$

$$\therefore d_2\left(f\left(q\right), f\left(\chi_i\right) < \frac{\varepsilon}{2} \ \ldots \left(3\right) \left[\text{from } (1)\right]$$

Now, $d_2((f(p), f(q)) \le d_2(f(p), f(x_i) + d_2(f(x_i), f(q))$

$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

 $=\epsilon$

Thus, $d_1(p, q) < \delta \Rightarrow d_2(f(p), f(q)) < \epsilon$

 \therefore f is uniformly continuous on M_1 .

Theorem 5.16: Let f be a 1-1 continuous function from a compact metric space M_1 onto any metric space M_2 . Then f^{-1} is continuous on M_2 . Hence f is a homeomorphism from M_1 onto M_2 .

Proof: We shall show that f⁻¹ is continuous.

By proving that F is closed set in $M_1 \Rightarrow (f^{-1)-1}(F) = f(F)$ is a closed set in M_2 .

Let F be a closed set in M₁

SinceM₁is compact

∴F is compact

Since f is continuous, f(F) is a compact subset of M_2 .

 \therefore f (F) is closed subset of M₂.

 \therefore f⁻¹ is continuous on M₂.

Solved Problems

Problem 1: Prove that the range of a continuous real valued function f on a compact connected metric space M must be either a single point or a closed and bounded interval.

Solution: Let $f:M \rightarrow R$ be a continuous function.

If f is a constant function, then the range of f is a single point.

Suppose f is not a constant function, then the range of f contains more than one point.

Since M is connected

f (M) is connected subset of R

 \therefore f(M) is an interval in R.

Also, since Mis compact and fis continuous.

 \therefore f (M) is a compact subset of R.

 \therefore f (M) is a closed and bounded subset of R.

Thus f (M) is a closed and bounded interval of R.

Problem 2 : Prove that any continuous function f: [a,b] R is not onto.

Solution: Suppose f is onto

Then f[a, b] = R

Now, since [a, b] is compact and fis continuous.

 \therefore f [a,b] = R is compact, which is a contradiction.

∴f is not onto.

EXERCISES

- 1. Give an example of an open cover which has no finite subcover for the following subsets of R.
 - (i) (5,6) (ii) $(5,\infty)$ (iii) $[5,\infty)$ (iv) [7,9].
- 2. Show that every finite metric space is compact.
- 3. Give an example of a connected subset of R which is not compact.
- 4. If A and B are two compact subsets of a metric space M, prove that AUB is also compact.
- 5. Determine which of the following subsets of R are compact.

(i) Z (ii) Q (iii) [1,2] (iv) (3,4)

Study Learning Material Prepared by

Dr. S.N. LEENA NELSON M.Sc., M.Phil., Ph.D.

Associate Professor & Head, Department of Mathematics,

Women's Christian College, Nagercoil - 629 001,

Kanyakumari District, Tamilnadu, India.