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UNIT |
METRIC SPACES

Definition : A metric space is a non-empty set M together with a function d:M X M — R
satisfying the following conditions:

(i d(x,y) =0forallx,y e M

(i) dx,y)=0iffx=y

(i)  d(x,y)=d(y,x) forallx,y e M

(iv) d(x,z) <d(x,y)+d(y,z)forall x,y,z € M (triangle inequality)

d is called a metric or distance function and d(x,y) is called the distance between x and y.

Note : The metric space M with the metric d is denoted by (M, d) or simply by M when the

underlying metric d is clear from the context.

Example 1 : In R we defind d(x,y) = [x — y|. Then d is a metric on R. This is called the

usual metric on R.

Proof : Clearly d(x,y) = |x — y| = 0.
Also,d(x,y) =0 |lx—y|=0 x=1y.
dix,y) = lx =yl =y — x| = d(y,x).
Now, let x,y,z € R.
Then, d(x,z) = |x—z|=|x—y+y—z|<|x—y|+ |y —z| =d(x,y) + d(y, z).
ad(x,z) <d(x,y) +d(y, 2).
Hence, d is a metric on M.

Note : Whenever we consider R as a metric space the underlying metric is taken to b the usual

metric unless otherwise stated.

Example 2 : In C, we define d(z,w) = |z — w|. Then d is a metric on C. This is called the

usual metric on C.

Note : If the complex number z = x + iy is identified with the point (x,y) of the two

dimensional Euclidean plane then the above distance formula takes the form d(z,w) =

Jx—w?+ (y—v)? where z=x+iy and w =u+ iv. This is nothing but the usual

distance between the points (x,y) and (u, v) in the plane.

Wanowmaniam Sundaranar Univensity, Derectorate of Distance and (Continuing Education, Toranelvele 3



Example 3 : On any non-empty set M we define d as follows:

_(Oifx=y
d(x’y)_{lifxiy

Then d is a metric on M. This is called the discrete metric on M.
Proof : Clearly, d(x,y) = 0and d(x,y) =0 & x = y.

Oifx=y
lifx+y

Also, d(x,y) = d(y,x) = {
~d(x,y) =d(y,x)forall x,y € M.
Now let x,y,z € M
Case () x = z
Then d(x,z) = 0.
Also, d(x,y) + d(y,z) = 0.
ad(x,z) <d(x,y) +d(y, 2).
Case (il) x # z
Then d(x,z) = 1.
Also, since X, z are distinct, y cannot be equal to both x and z.
Hence, either y # x or y # z.
~d(x,y)+d(y,z) = 1.
ad(x,z) <d(x,y) +d(y, z).
Thus d(x,z) < d(x,y) + d(y,z) forall x,y,z € M.

Hence, d is a metric on M.

Example 4 : In R™ we define d(x,y) = [X™,(x; — ¥;)?] /2 where x = (x4, x5, ...., X,,) and
y = (¥4, V2, e ... V). Thend is a metric on R™. This is called the usual metric on R™.

Proof: d(x,y) = [X%,(x; — v)2] /2 > 0.

1/2:0

dlx,y)=0e [Z(xi —¥i)?

& (x;—y)? =0foralli=1,2,.....n.
e x; =y foralli=12,....n.
S (X1, X9, ey X)) = (Y1, Vo eor e V)
S x=y.
Also, d(x,y) = X1, (x; —y)*1? = [E (e — x)*1 M? = d(y, %),
To prove the triangle inequality, take a; = x; — y;, b; = y; — z; and p = 2 in Minkowski’s

1
2

1 1
inequality we get, [X7,(x; — z)%]2 < [X7, (g —y)?l 2 4+ (X (v — x)?]
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i.e.,d(x,z) <d(x,y) +d(y,z).
~ d is a metric on R™.

Note : R™ with usual metric is called the n-dimensional Euclidean space.

Example 5: Consider R™. Let p > 1. we define d(x,y) = [X,(x; — y;)P]1 /P where x =
(%1, %, e, xp) and y = (v4, Y2, « ... V). Thend is a metric on R™.

The proof is similar to that of example 4.

Example 6 : Let x,y € R2. Then x = (xy,x,) and y = (v, y,) wWhere x;,x,,v;,y, € R. We
define d(x,y) = |x; — y1| + |x, — y,|. Then d is a metric on R?.
Proof : d(x,y) = |x; — y1| + |x, — y,| = 0.
dx,y) =0 |x; —yi| +[x; —y,| =0
& |x; —yil=0and|x; —y,[ =0
S x =y, and x, =y,
© (x,%2) = V1, ¥2)
Sx=y.
d(x,y) = lxg = y1l + |xz =yl
=y — x|+ ly2 — %2l
= d(y, x).
Now, let x,y, z € R2.
d(x,z) = |xy — z;| + |x; — 2,
=lx; =yt —zil +xp —y, + ¥, — 25
<{lxs =yl + ly1 =z} +{lxz — ¥ + |y — 221}
= {lxy —yil + |xz =y 1} + {ly1 — z1| + |y2 — 2,1}
=d(x,y) +d(y,z).
~d(x,z) <d(x,y) +d(y, z).

Hence d is a metric on R™.

Example 8: Let ¢y, ¢y, ... ... ....., ¢, be given fixed positive real numbers. Let x,y € R™ where
x = (x1,%X2, e, Xp) ANd y = (¥4, V2, o . ¥n). We define d(x,y) = X, ¢ilx; — yil. Thend

is a metric on R™.

Note : A non-empty set M can be provided with different metrics. For example, R™ has been

provided with five different metrics as seen from examples 4 to 8.
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Example 9 : Let p > 1. Let [,, denote the set of all sequences (x,,) such that Y3°[x, [P is
convergent. Define d(x,y) = [Xo,|x, — ¥, |P1/P where x = (x,,) and y = (y,,). Thend is
a metric on L,,.

Proof : Leta, b € L,.

First we prove that d(a, b) is a real number.

By Minkowski’s inequality we have,
1 1 1
D (a; + b)Plr < [XqlailP]? + X1 bilP]P i, (1)
Since a, b € L, the right hand side of (1) has a finite limit as n — co.

1

« [Z™,(a; + b;)P]? is aconvergent series.
1

Similarly we can prove that [Y>™,(a; — b;)P]? is also convergent series and hence
d(a,b) is a real number.

Now, taking limit as n — oo in (1) we get

1

X2, (a; + b)PlP <[22, 1a;lP1P + [X24116i[P]1P e 2
Obviously d(x,y) = 0.

S

dx,y)=0iffx=1y
d(x,y) = d(y,x).
Now, let x,y, z € L,

Taking a; = x; — y; and b; = y; — z; in (2) we get

o0 '% 0 [e'e] l
[Z(xi—)’i +yi—z)P| < [Z|xi—)’i|p Z|Yi—2i|p]p
i=1 | i=1 i=1
[ee] l [ OO o]
P 1
[Z(xi - Zi)p] N lei — il Zb’i - Zilp] p
i=1 =1 i=1

~d(x,z) <d(x,y)+d(y, 2z).

Hence, d is a metric on L,,.

1
P+

1
P+

Note : In particular, [, is a metric space with the metric defined by d(x,y) =
[Z;.Lozllxn - yn|2]1/2.

Example 10 : Let M be the set of all bounded real valued functions defined on a non-empty
set E. Define d(f,g) = sup{|f(x) — g(x)|/x € E}. Thend is a metric on M.
Proof : d(f,g) = sup{|f(x) — g(x)|:x € E} = 0.
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Also, d(f,g) = 0 & sup{lf(x) —g(x)|:x EE} =0
S |f(x)—gx)|=0forallx €E
S f(x)=g(x) forallx €E
e f=g.
Also, d(f,g) = sup{lf(x) — g}
= sup{lg(x) — ()}
=d(g. /).
Now, let f,g,h € M.
We have, |f(x) — h(x)| < [f(x) — g(x)| + [g(x) — h(x)]
suplf (x) — h(x)| < suplf(x) — g(x)| + suplg(x) — h(x)|
~d(f,h) <d(f,g) +d(g,h).
Hence, d is a metric on M.

Example 11 : Let M be the set of all sequences inR. Let x,y € M and let x = (x,,)) and y =

(y,). Define d(x,y) = —bon=ynl - Then d is a metric on M.

n 12n(1+|xn YnD

Proof : Let x,y € M. First we prove that d(x,y) is a real number > 0.

[Xn—ynl 1
We have —zn(1 AR for all n.

Also, Y7, z_n IS a convergent series.

o) [Xn=Ynl

=1 e ey 19 @ convergent series. [By Comparison test]

~ d(x,y) isareal number and d(x,y) = 0.

|
d(x, O@Z n =0
G y) = 2n<1+|xn D

S |xp, =yl =0 foralln

S x, =y, foralln

S x=y.

Also, d(x,y) = __xnzynl

n 12n(1+|xn =¥nl)

Zzn(n Y = xn|>

=d(y, x).
Now, let x,y,z € M. Then
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o —zal 1
(1+ |x, — z,]) 1+ |x, — z,])
1

T A+ = Yul + e — 20l
L oy = Yol F v — 2] — 1
T+ X = Yal F e — 2D
= yal F Iy — 2
T+ [y — Yl + Iy — 24

<1

_ |xn - Ynl n |yn - an
(1+|xn_yn|+|Yn_Zn|) (1+|xn_yn|+|yn_zn|)
|xn - Ynl |Yn - an

_(1+|xn_37n|) (1+|Yn_zn|)
Multiplying both sides of this inequality by zin and taking the limit from n = 1 to oo we

|xn—2nl o) [xn—ynl ) |Yn—2nl
ety » T < Yo o T
981 in=1 on (1t rpmznD) = 2= Wt ltn—ynl) + Z=1 (Ttlyn—znl)

~d(x,z) <d(x,y) +d(y, 2).

Hence, d is a metric on M.

Example 12 : Let [ denote the set of all bounded sequence of real numbers. let x = (x,,) and
y = (y,) € [*. Definedon(® as d(x,y) = lublx, — y,|. Thend is a metric on [®.
Proof: d(x,y) = lublx, — y,| = 0.
d(x,y) =0 & lublx, —y,| =0
S |x,—yl=0forl1<n<o
Sx, =y, forl<n<oo
S () =) ®x=y.
d(x,y) = lublx, — ynl
= lubly, — x|
=d(y, x).
Now, let z = (z,).
Now, |x, — z,| < |xy — Yul + |y — 24l
< lublx, — yu| + lubly, — z,|
=d(x,y) +d(y, z).
s lublxy, — z,| < d(x,y) +d(y,2)
ad(x,z) <d(x,y) +d(y, z).
Hence, d is a metric on 1.
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Solved Problems :

Problem 1: Let d, and d, be two metrics on M. Define d(x,y) = d,(x,y) + d,(x.y). Prove
that d is a metric on M.
Solution : Since, d, and d, are two metrics on M, we have
di(x,y)=0forallx,y e M
d,(x,y) =0iffx =y
d,(x,y) =d,(y,x) forallx,y e M
di(x,z) <d,(x,y) +d,(y,z) forall x,y,z e M
and
d,(x,y)=0forall x,y e M
d,(x,y) =0iffx =y
d,(x,y) = d,y(y,x) forallx,y e M
d,(x,z) <d,(x,y) +d,(y,2) forall x,y,ze M
dx,y) =d,(x,y) + d,(x,y) =0
dx,y) =0 d,(x,y) +d,(x.y) =0
o di(x,y) =0and d,y(x.y) =0
e x=y.
d(x,y) =d,(x,y) +d,(x.y)
=d;(y,%) + d(y,%)
= d(y,x).

Now, let x,y,z € M.
di(x,z) <d(x,y) +di(y,2)& d,(x,z) < d,(x,y) + d,(y,2)
Adding these two we get
dy(x,z) +d,(x,2) < (dl(x, y) + d,(x, y)) + (d,(y,2) + d,(y,2))
i.e.,d(x,z) <d(x,y) +d(y, z).

~ d is a metric on M.

Problem 2 : Determine whether d(x, y) defined on R by d(x,y) = (x — y)? is a metric or not.
Solution : Let x,y € R.
d(x,y) = (x—-y)*=0.
dx,y) =0 (x-y)*=0

o x=y.
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d(x,y) = (x—-y)? =@ -x?=dyx.

But triangle inequality does not hold.
Takex = =5,y = —4 and z = 4.
Thend(x,y) = (-5+4)? =1

d(y,z) = (-4 — 4)? = 64

d(x,z) = (4+5)? =81
Here, d(x,z) > d(x,y) + d(y, z).
Hence triangle inequality does not hold.

~ d is not a metric on R.

Problem 3 : If d is a metric on M, is d? is a metric on M?
Solution : Consider d(x, y) defined on R by d(x,y) = |x — y|.
From Example 1, we have d is a metric on R.

But, d*(x,y) = |x — y|* = (x — )2

But d? is not a metric. [From Problem 2].

Problem 4 : If d is a metric on M, prove that v/d is a metric on M.

Solution : Let x,y,z € M.
Since, d(x,y) = 0, we have \/d(x,y) = 0.

Also, \/d(x,y) = \/d(y,x)
Now, d(x,z) < d(x,y) + d(y,2)

2 Jd(x,z) <d(x,y) +d(y,2)
< Jd(xy) +/d(©,2)

Hence, vd is a metric on M.

d(x,y)

Problem 5 : Let (M, d) be a metric space. Define d, (x,y) = TrdCey) Prove that d, is a metric

on M.

Solution : d; (x,y) = —2¥_ > 0 [since, d(x,y) = 0]

1+d(x,y)

dey) _
1+d(x,y)
S d(x,y) =0 x =y.[~disametric]

d(x,y)
1+d(x,y)

dl(x::)’) =0&

dl(xly) =
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d(y,x)

- 1+d(y,x)
= dl (y, X)
Now, let x,y,z € M.
_ d(xz)
Thend,(x,z) = Tt
1
=1-—
1+d(x,2)
1

<1-

- 1+d(x,y)+d(y,2)

1+d(x,y) +d(y,z) -1
1+d(x,y)+d(y, 2)

_ dxy) +d(y,2)
C1+d(x,y) +d(y,2)

3 d(x,y) d(y, z)
1+d(x,y) +d(y,z) 1+d(x,y)+d(y, 2)
d(x,y) d(y,z)

<
1+d(x,y) 1+d(y,z)

= dl(xJY) + dl(YJZ)'
Thus, d,(x,z) < d,(x,y) + d,(y, z).

Hence, d, is a metric on M.

Problem 6 : Let (M,d) be a metric space. Define d,;(x,y) = min{1,d(x,y)}. Prove that d, is

a metric on M.
Solution : d; (x,y) = min{1,d(x,y)} = 0.
~dy(x,y) = 0.
d,(x,y) = 0 © min{1,d(x,y)} 0
o dlx,y)=0
Sx=y.

Also, d; (x,y) = min{1,d(x,y)}
= min{1, d(y, x)}
=d(y,x).
Now, let x,y,z € M.
Then d,(x,z) = min{1,d(x,2)} < 1.
Toprove : d,(x,2z) < d,;(x,y) + d,(y, 2).
Ifd,(x,y) = 1ord,(y,z) = 1the inequality is obvious.
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Letd,(x,y) <landd,(y,z) < 1.

Then, d,(x,y) + d;(y,2) = min{1,d(x,y)} + min{1, d(y, z)}
=d(x,y) +d(y,2)
>d(x,z)
> min{1,d(x, z)}
=d,(x,z).

Thus, d,(x,z) < d;(x,y) + d,(x, z).
~ d4 isa metric on M.

Problem 7 : Let M be a non-empty set. Letd: M X M — R be a function such that
(Dd(x,y) =0iffx = y.
(i)d(x,y) <d(x,z) + d(y,z) forallx,y,z € M.
Prove that d is a metric on M.
Solution : Put y = x in (ii).
We have, d(x,x) < d(x,z) + d(x, z).
~0<2d(x,2) by (i)
~d(x,z)=0.
Now to prove d(x,y) = d(y, x).
Putz=xin(i)wgetd(x,y) <d(x,x)+ d(y,x).
i.e.,d(x,y) < d(y,x) using (i)
Since this is true for all x,y € M we have d(y, x) < d(x, y).
Hence, d(x,y) = d(y, x).
Now (ii) can be written as d(x, y) < d(x, z) + d(z,y) which is the triangle inequality.

~ d is a metric on M.

Problem8: If (M,,d,), (M,,d,),,...,(M,,d,) are metric spaces then M; X M, X ... ..........X
M, is a metric space with metric d defined by d(x,y) =X, d;(x;y;) where x =
(X1, %2, e, X0); YV = (V1) Vo wev e e, V).
Solution : d(x,y) = X, d;(x;,y;) = 0.

Also, d(x,y) =0 YX* di(x;,y) =0

s di(x;,y;) =0foralli=1,2,......n
e x;=yforalli=1.2,......n
S (X1, Xz, ey Xn) = (Y1, Vay eov e ey Vi)
S x=y.
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Also, d(x,y) = X~ d;i(x;, )

= z d;(yi, x;)
=1

=d(y, x).
Now, let x,y,z € M.

d(x,z) = Z d;(x;, ;)

< Z[di(xi; yi) +di(yi, z)]

i=1

d;(x;, yi) + Z d;(vi, z;)
=d(x,y) +d(y, z).
ad(x,z) <d(x,y) +d(y, 2).

Hence, d is a metric on M.

Problem 9: In a metric space (M, d) prove that |d(x,z) — d(y,z)| < d(x,y) for allx,y,z €
M.
Solution : let x,y,z € M.

We have d(x, z) < d(x,y) + d(y, 2).

ad(x,z) —d(y,z) <d(x,y). e, (i)

Interchanging x and y in (i) we get

d(y,z) —d(x,z) <d(y,x) = d(x,y)
ad(y,z) —d(x,z) <d(x,y). (i)
From (i) and (ii) we get |d(x,z) — d(y, 2)| < d(x,y).

BOUNDED SETS IN A METRIC SPACE

Definition : Let (M,d) be a metric space. We say that a subset A of M is bounded if there

exista a positive real numbr k such that d(x,y) < k for all x,y € A.

Example 1 : Any finite subset A of a metric space (M,d) is bounded.
Proof : Let A be any finite subset of M.
If A = @, then A is obviously bounded.
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Let A+ @. Then {d(x,y)/ x,y € A} is afinite set of real numbers.
Let k = max{d(x,y)/x,y € A}.
Clearly, d(x,y) < k for all x,y € A.
=~ A'is bounded.

Example 2 : [0, 1] is a bounded subset of R with usual metric since d(x,y) < 1 forall x,y €
[0,1].
More generally any finite interval and any subset of R which is contained in a finite interval

are bounded subsets of R.
Example 3 : (0, o) is an unbounded subset of R.

Example 4 : If we consider R with discrete metric, then (0, o) is bounded subsets of R, since
d(x,y) < 1forall x,y € (0,0).
More generally, any subset of a discrete metric space M is a bounded subset of M.

Example5:Ini, lete; = (1,0,0,...,0,..),e, = (0,1,0, ... ...,0, .....),e5 = (0,0,1,0, ...,0. .....),
........ Let A ={eq, e5,€3 . e, €y e o .. ;. Then A'is a bounded subset of [,.

V2 ifn#m

Proof : d(e,, = {
(€ns em) 0if n=m.

d(e,, e,) =2 forall e,, e, € A.
~ A is a bounded set in [,.

Example 6 : Let (M, d) be a metric space. Define d,(x,y) = %.
We know that (M, d,) is also a metric space.
Also, d,(x,y) < 1forall x,y € M.

Hence, (M, d,) is a bounded metric space.

Definition : Let (M, d) be a metric space. Let A € M. Then the diameter of A, denoted by
d(A), is defined by d(A) = L.u.b.{d(x,y)/x,y € A}.

Note 1 : A non-empty set A is a bounded set iff d(A) is finite.

Note 2 : Let A, B S M. Then A € B = d(4) < d(B).

Example 1 : The diameter of any non-empty subset in a discrete metric space is 1.

Example 2 : In R the diameter of any interval is equal to the length of the interval. For example,
the diameter of [0, 1] is 1.
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Example 3 : In any metric space d(@) = —oo.
OPEN BALL (OPEN SPHERE) IN A METRIC SPACE

Definition : Let (M,d) be a metric space. Leta € M and r be a positive real number. Then the
open ball or the open sphere with centre a and radius r denoted by B, (a, ) is the subset of M
givenby B;(a,r) ={x e M / d(a,x) < r}.

When the metric d under consideration is clear we write B(a,r) instead of B;(a, ).

Note 1 : B(a,r) is always non-empty since it contains atleast its centre a.
Note 2 : B(a,r) is a bounded set.
For, let x,y € B(a,r).
x€B(ar)=>d(ax)<r
y € B(a,r) > d(a,y)<Tr
~d(x,y) <d(x,a) +d(a,y) <r+r=2r.
Thus, d(x,y) < 2r.

Hence, B(a,r) is bounded.

Example 1 : Consider R with usual metric. Let a € R.
Then B(a,r) = {x € R/ d(a,x) < r}
={x€R/|x—al <r}
={x€R/-r<x—a<r}
={x€R/a—-r<x<a+r}

=(a—r,a+r).

Example 2 : Consider C with usual metric. Leta € C.
Then B(a,r) ={z € C/d(a,z) <r}
={z€C/lz—al <1}

This is the interior of the circle with centre a and radius r.

Example 3 : In R? with usual metric B(a, r) is the interior of the circle with centre a and radius

r.

_ _ Mifr>1
Example 4 : Let d be the discrete metric on M. Then B(a,r) = {{a}lz;rr <1
lifx#y

Oifx=y

Leta € M. Letr be any positive real number.

Proof : We have, d(x,y) = {
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Case (i) Let v > 1. Then, B(a,r) = {x € M/d(a,x) < r}.
Clearly every point x € M such that d(a,x) <.
Hence, B(a,r) = M.
Case (ii) Let r < 1.
In this case for any point x # a,d(a,x) =1=>r.
Hence, x ¢ B(a,r) so that B(a,r) = {a}.

Mifr>1

“Blar) = {{a} ifr<t

Example 5 : Consider M = [0,1] with usual metric d(x,y) = |x — y|.

Here, B (0,2) = {x € [0,1]/ d(0,x) <}

_ {x € [0.1]/]x] < %}

o)

Example 6 : Consider R? with the metric d given by
d((xp)ﬁ), (leyZ)) = |x1 — x3| + [y1 — ¥2l
Then B((0,0),1) = {(x,y) € R?/ |x — 0| + |y — 0| < 1}
={(x,y) eR?/ Ix| + Iyl < 1}
This is the interior of the square bounded by the four linesx +y =1, —x+y =1, —x —
y=Lx—-y=1 ie,x+y=1,—x+y=Lx+y=-Lx—-y=1

Example 7 : Consider R? with the metric d given by
d((x1,y1), (x2,¥2)) = max{lx; — x| + |3 — 2}
Then B((0,0),1) = {(x,y) € R?/ max{|x — 0| + |y — 0]] < 1}

={(x,y) € R?/max{ |x| + [yl} < 1}
This is the interior of the square with vertices (1,1), (—1,1),(—1,—1)and (1, —1).

Exercises

1. In R with usual metric find
(i) B(—1,1) (i) B(1,1) (iii)) B(1/2 , 1)
2. In[0,1] with usual metric find
(i) B(1/2,1) (i) B(0,2/4)  (iii) B(1,1/2) (iv( B(1/4, Ya)
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OPEN SETS

Definition : Let (M,d) be a metric space. Let A be a subset of M. Then A is said to be open

in M if for every x € A there exists a positive real number r such that B(x,r) < A.

Example 1 : In R with ususal metric (0, 1) is an open set.
Proof : Let x € (0,1).
Choose r = min{x — 0,1 — x} = min{x, 1 — x}.
Clearly, > 0 and B(x,r) = (x —r,x + r) < (0,1).
=~ (0,1) is open.

Example 2 : In R with usual metric [0, 1) is not open since no open ball with centre O is
containd in [0,1).

Example 3 : Consider M=[0,2) with usual metric. Let A =[0,1) € M. Then A is open in M.
Proof : Let x € [0,1)

1 1
fx=0thenB(03)=[0l)ca
If x # 0 choose r = min{x, 1 — x}.
Clearly r > 0 and B(x.r) = (x —r,x + 1) € [0,1).

~ Ais openin M.

Example 4 : Any open interval (a,b) is an open set in R with usual metric.
Proof : Let x € (a, b).
Choose r = min{x — a,b — x}
Clearly, r > 0 and B(x,r) S (a, b).

=~ (a, b) is an open set.
Note : Similarly we can prove that (—oo, a) and (a, ) are open sets.

Example 5 : In R with usual metric, the set {0} is not an open set since, any open ball with

centre 0 is not contained in {0}.

Example 6 : In R with usual metric any finite non-empty subset A of R is not an open set.
Proof : Any open ball in R is a bounded open interval which is an infinite subset of R.
Hence, it cannot be contained in the finite subset A.

Hence, A is not open in R.

Example 7 : Q is not open in R.
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Proof : Let x € Q.
Then, for any r > 0 the interval (x —r,x 4+ r) contains both rational and irrational
numbers.
&~ (x —r,x + r) is not a subset of Q.
Hence, Q is not open in R.

Example 8 : The set of irrational numbers I is not open in R.
Proof : Let x € I.
Then, for any r > 0 the interval (x —r,x 4+ r) contains both rational and irrational
numbers.
~ (x —r,x +r) is not a subset of I.
Hence, | is not open in R.

Example 9 : Z is not open in R.
Proof : Letx € Z.
Then, for any r > 0 the interval (x — r,x + r) is not a subset of Z.

Hence, Z is not open in R.

Example 10 : In a discrete metric space M every subset A is open.
Proof : If A = @, trivially A is open.
Let A # Q.
Letx € A.

Then B (x, %) = {x} c A.

Hence, A is open in M.

Theorem 1.1 : In any metric space M, (i) @ is open.
(if) M is open.
Proof : (i) Trivially @ is an open set.

(ii) Let x € M. Clearly for any r > 0,B(x,r) € M. Hence, M is an open set.

Theorem 1.2 : In any metric space (M,d) each open ball is an open set.
Proof : Let B(a, r) be an open ball in M.
Letx € B(a, 1)
Thend(a,x) <r.
~0<r-—d(ax). ie,r—d(ax)>0.
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Letr, = r — d(a, x).
We claim that B(x, ;) € B(a,r).
Lety € B(x,1y)
~d(x,y) <r=r—d(a,x).

sdlx,y)+dla,x)<r. (1)
Now, d(a,y) < d(a,x) + d(x,y) <r[From (1)]

~d(a,y) <r.

~y € B(a,r).

Hence, B(x,r,) € B(a,r).

~ B(a,r) is an open set.

Theorem 1.3 : In any metric space the union of family of open sets is open.
Proof : Let (M, d) be a metric space,
Let {4;/i € I} be a family of open sets in M.
Let A = Ujer 4;
If A =@ then A is open.
~ Let A # Q.
Letx € A. Thenx € A; for somei € I.
Since A; is open, there exists an open ball B(x, r) such that B(x,r) S A;.
~ B(x,7) € A.

Hence A is open.

Theorem 1.4 : In any metric space the intersection of a finite number of open sets is open.

Proof : Let (M, d) be a metric space.
Let A, A,, ... ... ... , A, be open sets in M.
LetA=A4,U 4, U ......... U A,
If A = @ then A is open.
~ LetA # Q.
Letx € A. Thenx € A; foreachi=1,2,.......n.

Since A; is open, there is a positive real number r; such that B(x,r;) S A;.

Let r = min{ry, 75, e cev e v, 13}
Obviously r is a positive real number and B(x,r) € B(x,r;) forall i = 1,2,
Hence B(x,r) € A, foralli = 1,2, .......,n [from (1)].
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n
~B(x,r) € nAi.
i=1

.~ B(x,r) € A.
~ A is open.

Note : The intersection of an infinite number of open sts in a metric space need not be open.

For example, Consider R with usual metric.
Let 4, = (—1,3).

nn

Then A,, is open in R for all n.
But N;~; A, = {0} which is not open in R.

Characterization of open sets in terms of open balls

Theorem 1.5 : Let (M, d) be a metric space. Let A be any non-empty subset of M. Then A is
open iff A can be expressed as th union of family of open balls.
Proof : Let A be any non-empty subset of M.
Assume that A is open.
To prove, A can be expressed as the union of family of open balls.
Let x € A.
Since, A is an open set there exists an open ball B(x, ;) such that B(x,7,) € A
Clearly, Uyes B(x, 1) = A
Thus A is the union of family of open balls.
Conversely, Assume that A can be expressed as the union of family of open balls.
To prove, A is open.
By Theorem 1.2, each open ball is an open set.
By Theorem 1.3, In any metric space, the union of family of open sets is open.

Hence, A is open.

SOLVED PROBLEMS
Problem 1 : Let (M, d) be a metric space. Let x,y be two distinct points in M. Prove that there
exists two disjoint open balls with centres x and y respectively.

Solution : Since, x # y,d(x,y) =r > 0.

Consider the open balls B ( i ) and B (y, ir).

We claim that B (x,i ) ( )
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Suppose B (xir) n B (y,ir) + 0.

Letz€RB (x,ir) N B (y,ir)

1 1
~ZEB (x,zr> and z € B (y,Zr)

1 1
sd(x,z) < il and d(y,z) < s

Now, d(x,y) < d(x,z) +d(z,y) < ir +ir — %r_

which is a contradiction.

Hence, B (x,ir) N B (y,ir) = Q.

Problem 2 : Let (M, d) be a metric space. Let x € M. Show that {x}¢ is open.
Solution : Let y € {x}¢. Theny # x.
~d(x,y)=r>0.

Clearly B (y,%r) c {x}°.

~ {x}° is open.

Problem 3 : Let (M,d) be a metric space. Show that every subset of M is open iff {x} is open
for all x € M.
Solution : Suppose every subset of M is open.
Then obviously {x} is open for all x € M.
Conversely, assume that {x} is open for all x € M.
To prove A is open.
Let A be any subset of M.
If A =@ then A is open.
~Let A # @. Then A = U, eafx}.
By hypothesis, {x} is open.

Since arbitrary union of open sets is open, A is open.

1
Problem 4 : Let A = {(an)/(an) €l and [Yr_; a,?]z < 1}. Prove that A is open in [,.

Solution : We first prove that A = B(0, 1) where 0 = (0,0, ........).

Let x € A. Hence, Yo x,% < 1.

o 1/2 o
s d(x,0) = [Z(xn - 0)2] = [Z (xn)?
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Thus, d(x,0) < 1.

~x €B(0,1)
“ACSB0,1) oo (1)
Now, let y € B(0,1)
~d(0,y) < 1.
1
© 2
Z(yn -0)?| <1
n=1
o 1/2
Z(yn)2 <1
n=1
Ly €A
“B0,1)CA oo (2)

From (1) and (2) we get A = B(0, 1).
Now the open ball B(0, 1)is an open set.
Hence, A is an open set.

Problem 5 : Prove that any open subset of R can be expressed as the union of a countable
number of mutually disjoint open intervals.
Solution : Let A be an open subset of R.
Let x € A.
Then there exists a positive real number r such that B(x,7) = (x —r,x +r) S A.
Thus there exists an open interval | suchthat x € I and I < A.
Let I,, denote the largest open interval such that x € I and I, € A.
Clearly, Uyes I, = A.
We claimthat I, = I,, or I, N I, = @.
Suppose I, N I, # .
Then I, U I, is an open interval contained in A.
But I, is the largest open interval such that x € I, and I,, € A.
~L,Uul, =1I,sothatl, CI,.
Similarly, I, € I,.
= I, = 1,,. Thus the intervals I, are mutually disjoint.
We claim that the set F = {I,/ x € A} is countable.

Now for each I, € F choose a rational number r,, € L.
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Since the intervals I, are mutually disjoint I, # I, = 1, # ;.
~ f+F — Q defined by f(I,) =, is 1-1.
=~ F is equivalent to a subset of Q which is countable.

~ F is countable.

EQUIVALENT METRICS

Definition : Let d and p be the two metrics on M. Then the metrics d and p are said to be

equivalent if the open sets of (M, p) are the open sets of (M, d) and conversely.

Problem 6 : Let (M, d) be a metric space. Define p(x,y) = 2d(x,y). Then d and p are
equivalent metrics.
Solution : We know that p is a metric on M.
We first prove that B,(a,r) = B, (a, 21).
Letx € B;(a,r)
sdla,x)<r.
~ 2d(a,x) < 2r.
~p(x,y) < 2r.
Hence. x € B,(a, 21).
~ Bq(a,7) €EB,(a,2r) ... (1)
Now, let x € B,(a, 2r)

~pla,x) < 2r.

%p(a,x) <r.
~dla,x)<r.
.~ x € By(a,r)
~B,(a,2r) € Bg(a,1) oo (2)
~ By (1)and (2)we get,B4(a,r) = B,(a,27) ... ... ... ...(3)
Now, let G be any open subset in (M,d). Leta € G.
Hence, there exists r > 0 such that B;(a,r) € G.
~B,(a,2r) € G (using (3))
~ G isopenin (M, p).

Conversely, suppose G is open in (M, p).
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Leta € G.

Hence, there exists r > 0 such that B, (a,r) € G.

1
~ By (a,§r> c G (using (3))
~ Gisopenin (M,d).

~ d and p are equivalent metrics.

d(x,y)

Problem 7 : Let (M, d) be a metric space. Define p(x,y) = i) Prove that d and p are

equivalent metrics on M.

Solution : We know that p is a metric on M.

We first prove that B,(a,7) = By (a, ;—T) provided 0 <r < 1.
Letx € B,(a,1)

~pla,x) <.

d(x,y)
/< T.
1+d(x,y)

adxy) < r(l + d(x, y)) =r+rd(xy).
ad(x,y)—rd(x,y) <r
sdlx,y)1-r)<r

r
ad(x,y) < T (since0 <r<1)
T
Hence. x € By (a, ;)
r
~ By(a, r) € By (a, 1= r) v e (1)

Now, let x € B, (a, i)

T
sdla,x) <——
1—r

~(A-r)d(a,x)<r
~d(a,x) —rd(a,x)<r
~d(a,x) <r+rd(a,x)
wd(a,x) <r(1+d(ax))
d(a,x)
‘0t da0) <r
spla,x)<r

~ x € By(a,1)
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~ By (a, i‘r) S By(a,r) .. (2)

1

~ By (1)and (2)we get, B,(a,r) = B, (a, 7 ir) I )|

Now, let G be any open subset in (M, p). Leta € G.

Hence, there exists r > 0 such that B,(a, 1) S G.

Without loss of generality we may assume that r < 1.

~ By (a, 7 i r) c G (using (3))

~ Gisopenin (M,d).
Conversely, suppose G is open in (M, d).
Leta € G.
Hence, there exists r > 0 such that B;(a,r) S G.

~ B, (a, i) c G (using (3))

~ Gisopenin (M, p).

~ d and p are equivalent metrics.

Problem 8 : If d and p are metrics on M and if there exists k > 1 such that %p(x, y) <
d(x,y) < kp(x,y) for all x,y € M. Prove that d and p are equivalent metrics.

Solution : Suppose that there exists k > 1 such that%p(x, y) <d(x,y) <kp(x,y) ... (1)

forall x,y € M.
Let G be an open set in (M, d).
Leta € G.
Hence, there exists r > 0 such that B;(a,r) € G. .............. (2
We now claim that B, (a, %) cG
Let x € B, (a, i)
~pla,x) < %
~kplax)<r.

~d(a,x) <r. [using 1]
= x € By(a,r) € G [By (2)]
L X EQG.

Hence, B, (a, %) CG.
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~ G isopenin (M, p).
Conversely, let G be openin (M, p).
Leta € G.
Hence, there exists r > 0 such that B,(a,7) € G ... ..........(3)

We now claim that B, (a, %) cG

Let x € By (a, %)
~da,x) < %
~kd(a,x) <.
s~ pla,x) <r. [using 1]
~ x € B,(a,1) € G [By (2)]
X EQG.
Hence, B, (a, %) cG.
~ G isopenin (M, d).

Hence d and p are equivalent metrics on M.
Exercises

1. Determine which of the following subsets of R are open in R with usual metric.
(i) R (i) N (iii) Z (iv) Q (v) (1,2)U(3,4)
(vi) (0,00)  (vii) (-00,a)
2. Prove that the complement of any finite subset of a metric space M is open.

SUBSPACE

Definition : Let (M, d) be a metric space. Let M, be a non-empty subset of M. Then M, is

also a metric space with the same metric d. We say that (M,, d) is a subspace of (M, d).

Note : If M, is a subspace of M a set which is open in M; need not be open in M.

For example, if M=R with usual metric and M; = [0,1] then [0%) is open in M, but not
open in M.
Theorem 1.6 : Let M be a metric space and M, a subspace of M. Let A; € M;. Then A4, is

open in M, iff there exists an open set A in M such that A; = A n M;.
Proof : Let M, be a subspace of M.
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We denote B;(a, r) the open ball in M; with centre a and radius r.
Then B;(a,r) ={x € M, /d(a,x) <r}.
Also, B(a,r) ={x €M /d(a,x) <r}.
Hence, B;(a,7) = B(a,r) N My. .ccceevverenennne, (1)
Now, let A; be an open set in M.
Ay = Ugen, Bi(x,7(x)) by theorem 1.5
= [Jere aml by

XEA,

= [U B(x,7(x))] nM,

XEA,
= AN M; where A = Uyea, B(x,7(x)) which is open in M.
Conversely, let A, = A n M; where A is open in M.
We claim that A, is open in M.
Let x € A;.
L~ x €Aand x € M;.
Since A is open in M there exists a positive real number r such that B(x,r) € A.
~M;NnB(x,r) € M; nA.
i.e.,B;(x,1r) € A [using (1)]

Hence, A, is open in M;.

Example1: LetM = Rand M; = [0,1]. LetA, = [0%)

Now, 4, = [O, 1) = (—l l) N [0,1] and (—%%) is open in R.

2 2’2

[0%) is open in [0,1].

Example 2 : Let M = R and M; = [1,2] U [3,4].
Let 4, = [1,2]. Then 4, = [1,2] = (3,5) n M,.

~ [1,2] is open in M;.
Similarly, [3,4] is open in M.
Hence, [1,2] U [3,4] is open in M,.

Problem 1 : Let M, be a subspace of a metric space M. Prove that every open set A; of M; is
open in M iff M, itself is open in M.

Solution : Suppose every open set A; of M, is open in M.
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Now, M, is open in M,.
Hence, M, is open in M.
Conversely, suppose M; is open in M.
Let A; be an open set in M.
Then by theorem 1.6, there exists an open set A in M such that A; = A n M;.

Since A and M, are open in M; we get A, is open in M.
INTERIOR OF A SET

Definition : Let (M, d) be a metric space. Let A S M. Let x € A. Then x is said to be an
interior point of A if there exists a positive real number r such that B(x,r) < A.
The set of all interior points of A is called the interior of A and it is denoted by IntA.

Note : IntA C A.

Example 1 : Consider R with usual metric.
(@) Let A =[0,1]. Clearly 0 and 1 aree not interior points of A and any point x € (0,1)
is an interior point of A. Hence, IntA = (0,1).
(b) Let A =Q. Letx € Q.
Then for any positive real number r, B(x,r) = (x — r,x + r) contains irrational
numbers.
~ B(x,r) is not a subset of Q.
~ X Is not an interior point of Q.
Since x € Q is arbitrary, no point of Q is an interior point.
~ IntQ = Q.
(c) Let A be a finite subset of R. Then IntA = @.

1

{12 1 _
@ Letd={0,12,.......2, ..} Theninta =o.

Example 2 : Consider R with discrete metric.
Let A =[0,1]. Let x € [0,1].

Then B (x, l) = {x} c A.

2

~ x is an interior point of A.
Since, x € [0,1] is arbitrary, IntA=A.
Example 3 : In a discrete metric space M, IntA=A for any subset A of M.
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Basic properties of interior
Theorem 1.7 : Let (M,d) be a metric space. Let A,B € M.
() Ais open iff A = IntA. In particular, Int® = @ and IntM = M.
(i) IntA=Union of all open sets contained in A.
(iii)  IntA'is an open subset of A and if B is any other open set contained in A then B <
IntA. i.e., IntAis the largest open set contained in A.
(ivy A S B = IntAC IntB.
(v) Int(AnB) = IntAn IntB.
(vij  Int(AUB) 2 IntAU IntB.
Proof : (i) From the definition of open set, A is open iff A = IntA.
Also, Int® = @ and IntM = M.
(ii) Let G =U {B / B is an open subset of A}.
To prove IntA=G.
Let x € IntA.
= There exists a positive real number r such that B(x,r) € A.

Thus B(x,r) is an open set contained in A.
~B(x, 1) Cq.
L X EQG.
(117 = AN ¢ )
Now, let x € G.
Then there exists an open set B such that x € B and B < A.

Now, since B is open and x € B there exists a positive real number r such that B(x,r) S
B C A.

~ x is an interior point of A.
Hence, G € IntA ... ... e e s v . (2)
From (1) and (2) , we get G=IntA.

(1ii) Since union of any collection of open sets is open, (ii)=IntA is an open set.

Trivially IntA € A.
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Now, let B be any open set contained in A.
Then B € G = IntA [From (ii)]
~ IntA is the largest open set contained in A.
(iv) Let x € IntA.
= There exists a positive real number r such that B(x,r) < A.
But A € B.
Hence, B(x,r) € B.
~x€IntB
Hence, IntA € IntB.
(v) We have, AN B C A.
s~ Int(A N B) C IntA [From (iv)]
Also, AnB S B.
s~ Int(AN B) € IntB [From (iv)]
~Int(AnB) S IntAnIntB .........(1)
Now, IntA € A; IntB € B.
Hence, IntA N IntB € AN B.
Thus, IntA N IntB is an open set contained in A N B.
But Int(A N B) is the largest open set contained in A N B.
~IntAnIntB € Int(ANB) ...........(2)
From (1) and (2) we get Int(A N B) = IntA N IntB.
(vi)  Wehave, A€ AUB.
o IntA € Int(A U B) [From (iv)]
Also, B € AUB. .. IntB € Int(A U B) [From (iv)]
~ IntA U IntB < Int(A U B).
i.e.,Int(AU B) 2 IntA U IntB.

Note : Int(A U B) need not be equal to IntA U IntB.
For example, in R with usual metric, consider A = (0,2]&B = (2,3).
Then AU B = (0,3).
Clearly, Int(A U B) = (0,3).
But IntA = (0,2)& IntB = (2,3)
IntAuU IntB = (0,2) U (2,3) = (0,3) — {2}.
~ Int(AU B) # IntA U IntB.
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UNIT Il
CLOSED SETS

Definition : Let (M,d) be a metric space. Let A € M. Then A is said to be closed in M if the
complement of A is open in M.

Example 1 : In R with usual metric any closed interval [a,b] is a closed set.
Proof: [a,b] =R — [a,b] = (—o0,a) U (b, ).
Also (—oo,a)and (b, ) are open in R.
i.e., [a,b]€ is openin R.
Hence, [a,b] is closed in R.

Example 2 : In R with usual metric [a,b) is neither open nor closed.
Proof : [a,b) is not open in R since a is not an interior point of [a,b).

Now, [a,b)¢ = R — [a,b) = (—,a) U [b, ) and this set is not open since b is not an
interior point.

~ [a, b) is not closed in R.

Hence, [a,b) is neither open nor closed in R.

Example 3 : In R with usual metric (a,b] is neither open not closed.

Proof is similar to example 2.

Example 4 : Z is closed.
Proof : Z¢ = Uy-;(n,n + 1).
The open interval (n,n+1) is open and the union of open sets is open.
~ Z° is open.

Hence, Z is closed.

Example 5 : Q is not closed in R.
Proof : Q¢=the set of irrational which is not open in R.

~Q is not closed in R.

Example 6 : The set of irrational numbers is not closed in R.

Proof is similar to that of Example 5.

Example 7 : In R with usual metric every singleton set is closed.

Proof : Let a € R.
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Then {a} =R — {a} = (—,a) U (a, »).
Since (—, a) and (a, =) are both open sets, (—o, a) U (a, o) is open.
Thus, {a}€ is open.

Hence, {a} is closed.

Example 8 : Every subset of a discrete metric space is closed.
Proof : Let (M,d) be a discrete metric space.
LetA € M.
Since, every subset of a discrete metric spac is open. A€ is open.

~ A'is closed.

Definition : Let (M, d) be a metric space. Leta € M. Letr be any positive real number. Then
the closed ball or the closed sphere with centre a and radius r denoted by B,[a, ], is defined
by Byla,r] = {x € M/d(a,x) <r}.

When the metric d under consideration is clear we write B[a, ] instead of B,[a, r].
Example 1 : In R with usual metric Bla,r] = [a —1,a + r].

Example 2 : In R? with usual metric let a = (a,, a,) € R?.
Then Bla, 7] = {(x,y) € R?/d((a;,a,)), (x,y)) <1}
={(xy) ER*/(x —a))*+ (y —ax)* <1}
Hence, Bla, r] is the set of all points which lie within and on the circumference of the

circle with centre a and radius r.

Theorem 2.1 : In any metric space every closed ball is a closed set.
Proof : Let (M,d) be a metric space.
Let B[a,r] be an open ball in M.
Case (i) Suppose B[a,r]° = @
~ B[a,r]¢ is open and hence BJ[a,r] is closed.
Case (ii) Suppose B[a,r]¢ # @
Let x € B[a,r]¢
~x & Bla,r]
Thend(a,x) > r.
~d(a,x)—r>0.
Letr, = d(a,x) —r.
We claim that B(x, ;) € B[a,r]¢.
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Lety € B(x,1y)
~dlx,y)<r,=d(a,x)—r.
~d(x,y) +r <d(a x).
cd(a,x) >dGy) +1 0 (1)
Now, d(a,x) < d(a,y) + d(y,x)
~d(a,y) =d(a,x)—d(y x)
>d(x,y)+r—d(y,x)[From (1)] =r
~d(a,y) >r.
~y & B(a,r).
Hence, y € Bla,r]°
Hence, B(x,r;) € B[a,r]°.
~ Bla,r]¢ isopen in M.

~ Bla,r] is closed in M.

Theorem 2.2 : In any metric space M, (i) @ is closed, (ii) M is closed.
Proof : Since M€ = @ is open, M is closed.

Similarly, ¢ = M is open and hence @ is closed.

Theorem 2.3 : In any metric space arbitrary intersection of closed sets is closed.
Proof : Let (M, d) be a metric space,
Let {A4;/i € I} be a family of closed sets in M.
LetA = N A
We claim that A is closed.
We have, (N;e;4;) € = Ui A (By De — Morgan's Law)
Since 4; is closed, A;€ is open.
= Ujer 4;° is open.
=~ (Nier Ap) © is open.
Hence N;¢; 4; is closed.

Hence A is closed.

Theorem 2.4 : In any metric space the union of a finite number of closed sets is closed.
Proof : Let (M, d) be a metric space.
Let A;, Ay, ... ... ... , A, be closed sets in M.
By De-Morgan’s law, (4; UA, U ......UA,) =4, N4, N ...... NA,°.
Since each A4; is closed, 4;€ is open.
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Since finite intersection of open sets are open, 4, N 4,° N ... N A,° is open.
~ (AL UA, U .......UA,)¢ is open.
~ A UA, U ......UA, is closed.

Note : The union of an infinite number of closed sets in a metric space need not be closed.

For example, Consider R with usual metric.

Let A, = E, 1] wheren = 1,2,3, ... ... ....

Then U, 4, = U 5, 1] = u [ 1] u 5 1] u e
= (0,1] which is not closd in R.

Hence, U;~ 4, is not closed.

Theorem 2.5 : Let M b a metric space and M, be a subspace of M. Let F; € M,. Then F, is
closed in M, iff there exists a set F which is closed in M such that F; = F n M.
Proof : Let F; be closed in M;.
~ M; — F; isopen in M,.
&~ M; — F; = An M; where A is open in M (By theorem 1.6)
Now, F; =M, —(ANM,)) =M, —A=A°nM,.
Also, since A is open in M, A€ is closed in M.
~ F; = Fn M, where F = A is closed in M.

Proof of the converse is similar.
CLOSURE

Definition : Let A be a subset of a metric space (M,d). The closure of A, denoted by A is
defined to be the intersection of all closed sets which contain A. Thus,
A =U{B/Bisclosed inMand A € B}.

Note : Since intersection of any collection of closed sets is closed, A is a closed set. Further,
A 2 A. Also if B is any closed set containing A then A € B. Thus 4 is the smallest closed set

containing A.

Theorem 2.6 : Ais closed iff A = A.
Proof : Suppose 4 = A.

Since A is closed, A is closed.
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Conversely, suppose A is closed. Then the smallest closed set containing A is A itself.

Hence 4 = A.
Note : In particular, ()¢ =0 @(i)M =M (iii)A = A.

Example 1: Consider R with usual metric.
(@) Let A =[0,1]. We know that A is a closed set.
~A=4=1[01].
(b) Let A=(0,1). Then[0,1] is a closed set containing (0,1). Obviously [0,1] is the smallest

closed set containing (0,1).

~ A =10,1].
Example 2 : In a discrete metric space (M,d) any subset A of M is closed. Hence A = A.

Theorem 2.7 : Let (M,d) be a metric space. Let A,B € M.
Then(l) ASB=>ACB

Proof: (i) LetAS B
Now B 2 B 2 A.
=~ B is a closed set containint A.

But A is the smallest closed set containing A.

~ ACB.

(i) Wehave A € AUB.

~ ACAUB.
Similarly, B AUB

~AUuB<cAuB. L. 1)
Now A is a closed set containing A and B is closed set containing B.

~ AU B is aclosed set containing A U B.

But A U B is the smallest closed set containing AU B.
~AUB €cAuB. . 2

From (1) and (2) we get AUB = A U B.

(i) Wehave, ANBC A
~ANBcA
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Similarly, AnB € B

Hence, ANB < ANB.

Note : A N B need not be equal to A N B.
For example, in R with usual metric, take A=(0,1) and B=(1,2).
Then, AN B = Q.

~ANB=0=0.
ButAnB =1[0,1]n[1,2] = {1}.
~ANB#ANB.
Note : In a metric space (M,d) if E, E,, ......,E, are subsets of M then,
E,UE,U....UE, =E;UE, U ...........UE,.
LIMIT POINT

Definition : Let (M,d) be a metric space. LetA € M. Letx € M. Then x is called a limit point
or a cluster point or an accumulation point of A if every open ball with centre x contains atleast
one point of A different from x.

i.e., B(x,7)N (A —{x}) # @ forall r > 0.

The set of all limit points of A is called the derived set of A and is denoted by D(A).

Note : x is not a limit point of A iff there exists an open ball B(x,r) such that B(x,r) n
(A—{x}) = 0.

Example 1 : Consider R with usual metric.

(a) Let A=[0,1).

Any open ball with centre 0 is of the form (-r,r) which contains a point of [0,1) other

than 0.

Hence 0 is a limit point of [0,1).

Similarly 1 is a limit point of [0,1).

. . . . 1 1 3 5

2 is not a limit point of A, since (2 -5 2+ E) Nn[0,1) = (E'E) Nn[0,1) = @.
In this case all points of [0,1] are limit points of [0,1) and no other point is a limit point.
Hence D([0,1)) =[0,1].

(b) LetA = {1%; % } Here 0 is a limit point of A.
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For, consider any open ball (—r, r) with centre 0.

Choose a positive integer n such that% <r.

Then % € (—r,1).
=~ (=r,r) contains a point of A which is different from 0.

~ 0isa limit point of A.

1 is not a limit point of A since, (1 — i 1+ i) nA-{1})

_(3 5)0{11 1 }_@
- 4;4 2,3, ......... ,n, ...... —_ .

In fact any point except zero is not a limit point of A.
~ D(A) = {0}.
(¢) Z has no limit point.
Proof : Let x be any real number.
If X is an integer, then B (x, %) = (x — %,x + %) does not contain any integer
other than x. Hence x is not a limit point of Z.
If X is not an integer, let n be the integer which is closest to x.
Choose rsuch that 0 < r < |x — n|.
Then B(x,r) = (x — r,x + r) contains no integer.
Hence x is not a limit point of Z.
Since x is arbitrary, Z has no limit point.
~D(Z) = Q.
(d) Consider Q. Any real number x is a limit point of Q, since the interval (x —r,x + 1)
contains infinite number of rational numbers.
~ D(Q)=R.
Example 2 : In R x R with usual metric, D(Q X Q) = R X R.

The proof is similar to example (d) of 1.

Example 3 : Let (M,d) be a discrete metric space.
LetA €S M. Letx € M.

Then B (x,5) n(A— ) = (x}n (4 —{x}) = 0.
~ x is not a limit point of A.

Since x € M is arbitrary, A has no limit point.
~D(A) = 0.
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Thus any subset of a discrete metric space has no limit point.

Example 4 : Consider C with usual metric.
Let A = {z/|z| < 1}
Then D(A) = {z/|z| < 1}.

Theorem 2.8 : Let (M,d) be a metric space. Let A € M. Then x is a limit point of A iff each
open ball with centre x contains an infinite number of points of A.
Proof : Let x be a limit point of A.

To prove each open ball with centre x contains an infinite number of points of A.

Suppose an open ball B(x,r) contains only a finite number of points of A.

Let Bx,7) N (A —{x}) = {x1, x5, cev v vee e, X}
Letr; = min{d(x,x;)/i =12, ..........,n}
Since x # x;,d(x,x;) > 0 foralli=1,2,.......,nand hence r; > 0.

Also, B(x,r)n(A—{x}) =0
~ x is not a limit point of A which is a contradiction.
Hence every open ball with centre x contains infinite number of points of A.
Conversely, if each open ball with centre x contains an infinite number of points of A
then obviously x is a limit point of A.

Corollary : Any finite subset of a metric space has no limit point.
Proof : Let A be a finite subset of M.
To prove A has no limit point.
Suppose A has a limit point say Xx.
Then each open ball with centre x contains infinite number of points of A.
This is a contradiction since A is finite.

Hence, A has no limit point.

Theorem 2.9 : Let M be a metric space and A € M. Then A = AU D(A).
Proof : Let x € A U D(A). We shall prove that x € A.
Suppose x & A
. x € M — A and since A is closed, M — A is open.
~Bx,r)NA=0
~B(x,1)NA =0 [since A C A]
~ x € AU D(A) which is a contradiction.
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. x € A.
~AUDA) S A s (1)
Now, let x € A.
To prove x € AU D(A).
If x € Athenclearly x € AU D(A).

Suppose x ¢ A. We claim that x € D(A).
Suppose x € D(A). Then there exists an open ball B(x,r) such that B(x,7) N A = 0.
~B(x,r)* 2 A.

Since B(x,r) is open, B(x, )¢ is closed.
But A is the smallest closed set containing A.

~ A S B(x,7)°.
But x € A and x € B(x,r)¢ which is a contradiction.
Hence, x € D(4).

~x €AUD(A).
“ACAUD(A). e, (2)

From (1) and (2) A = A U D(A).

Corollary 1 : A'is closed iff A contains all its limit points. i.e., A is closed iff D(A4) € A.
Proof : A is closed <A = A [By theorem 2.6]
~x€Aorx € D(A).
If x € Athen x € B(x,r) N A.
If x € D(A) then B(x,r) N A = @ for all r > 0.
Hence in both cases B(x,r) N A = @ forall r > 0.
Conversely, suppose B(x,r) N A # @ for all r > 0.
We have to prove that x € A.
If x € A trivially x € A.
Letx ¢ A. Then A — {x} = A.
~Bl,r)Nn(A—{x}) # 0.
. x € D(A).
~x €A,

Corollary3:x € A & G n A # @ for every open set G containing x.
Proof : Let x € A.

Let G be an open set containing x. Then there exists » > 0 such that B(x,r) € G.
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Also, since x € 4, B(x,7) N A # Q.
~GNA=#Q.
Conversely, suppose G N A + @ for every open set G containing x.
Since B(x,r) is an open set containing x, we have B(x,r) N A # Q.

. x € A.

Example 1 : Consider R with ususal metric.
(@) LetA =10,1).
Then A = AU D(A).

=[0,1) U [0,1]
= [0,1].
byreta={12, ... 2 .}

Then A = Au D(4).

() Z=2ZuD(2)
=ZUQ="7
=~ Z is closed.
(d)@Q=0QuUD()
=QUR
= R.

~ Q is not closed.

Example 2 : In R x R with usual metric.
QxQ=@x*xQUuUD@xQ)
=(@XQU(RXR)
=R XR.

= Q X Q is not closed.

SOLVED PROBLEM
Problem 1 : Prove that for any subset A of a metric space, d(A4) = d(A) where d(A) is the
diameter of A.
Solution : We have A € A.
~d(A) <d(A). s (1)
Now, let £ > 0 be given. We claim that d(4) < d(4) + «.
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Let x,y € A.
~ B (x%e) NA =+ @andB (y,%s) NA=+¢@ [ByCorollary 2]
Letx, €B (x,%e) NnAandx, €B (y,%e) nA
~ X, EB (x,%e) and x, € B (y,%e).
ad(xxg) < % and d(y, x,) < 2 ......................... (2)
Also, x; € Aand x; € A=>d(x, X)) S d(A) e (3)
Now, d(x,y) < d(x,x1) + d(xq,x5) + d(x3,y)
<ze+dA)+5e  [by (D& (3)]
=d(A) + «.
Thus d(x,y) < d(4) + «.
~lub{d(x,y)/x,y € A} <d(A) +e.
i.e, d(4) <d(A) +e.
Now, since ¢ is arbitrary, we have d(4) < d(4)  .eeeeveeeeenan, (4)
By (1) and (4) we get d(4) = d(A).

DENSE SETS

Definition : A subset A of a metric space M is said to be dense in M or everywhere dense if

A=M.

Definition : A metric space M is said to be separable if there exists a countable dense subset
in M.

Example 1 : Let M be a metric space. Trivially, M is dense in M.

Hence any countable metric space is separable.

Example 2 : In R with usual metric Q is dense in R since Q = R.
Further Q is countable.

Hence R is separable.

Example 3 : Let M be a discrete metric space.
Let A c M and since A # M.
Since A is closed, A = A.
~ Ais not dense.
Hence, any countable discrete metric space is not separable.
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Example 4 : In R X R with usual metric Q x Q is a dense set since Q X Q = R X R.
Also Q is countable and hence Q x Q is countable.

=~ R X R is separable.

Theorem 2.10 : Let M be a metric space and A € M. Then the following are equivalent.
() Ais dense in M.,
(i)  The only closed set which contains A is M.
(iii)  The only open set disjoint from A is @.
(iv) A intersects every nonempty open set.
(v) A intersects every open ball.
Proof : (i)=(ii)
Suppose A is dense in M.
ThendA=M. . (1)
Now, let F € M be any closed set containing A.
Since, A is th smallest closed set containing A, we have A € F.
Hence, M € F. [by (1)]
Hence, M = F.
=~ The only closed set which contains A is M.
(i)=(iii)
Suppose (iii) is not true.
Then there exists a non-empty open set B such that BN A = @.
~ B€isaclosed set and B¢ 2 A.
Further, since B # @ we have B¢ # M which is a contradiction to (ii).
Hence, (i)=>(iii)
(iii)=(iv) is obvious.
(iv)=(v), since every open ball is an open set we get the result.
(V)=(i)
Letx € M.
Suppose every open ball B(x, r) intersects A.

Then by Corollary 2 of Theorem 2.9, x € A.

~ M C A.
But trivially 4 € M.
~A=M. Hence, A is dense in M.
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SOLVED PROBLEM
Problem 1 : Give an example of a set E such that both E and E€ are dense in R.
Solution : Let E = Q.
Since any open ball B(x,r) = (x —r,x +r) contains both rational and irrational
numbers Q and Q€.

Hence Q and Q€ are dense in R.
COMPLETE METRIC SPACE

Definition : Let (M,d) be a metric space. Let (x;,) = X1, X3, wev vee vy Xppy wev weme be a sequence of
points in M. Letx € M. We say that (x,,) converges to x if given &€ > 0 there exists a positive

integer n, such that d(x,,x) < & forall n = n,. Also x is called a limit of (x,,).

If (x,,) converges to x we write lim x, = x or (x,) = x.
n—-oo

Note 1 :(x,,) — x iff for each open ball B(x, £) with centre x there exists a positive integer n,

such that x,, € B(x, €) for all n = n,,.
Thus the open ball B(x, €) contains all but a finite number of terms of the sequence.
Note 2 :(x,,) - x iff the sequence of real numbers (d(x,,x)) - 0.

Theorem 2.11 : For a convergent sequence (x,,) the limit is unique.
Proof : Suppose (x,,) = x and (y,,) — v.
Let € > 0 be given.

Since, (x,) — x, there exists positive integern, such that d(x,,x) < % forall n > n,.
Also, since (y,,) — y, there exists positive integer n, such that d(y,,y) < Zfor all n > n,.

Let m be a positive integer such that m > ny,n,.

Then d(x,y) < d(x,x) +d(XmY)
<-+-=e

~d(x,y) < e

Since € > 0 is arbitrary, d(x,y) = 0.

LX =Y.

Note : In view of the above theorem if (x,,) — x, then x is called of the limit of the sequence

().
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Theorem 2.12: Let M be a metric space and A € M. Then

(i) x € Aiff there exists a sequence (x,) in A such that (x,) — x.
(i)  xis a limit point of A iff there exists a sequence (x,,) of distinct points in A

such that (x,) — x.

Proof : Let x € A. Then x € AU D(A).
~x €Aorx € D(A).
If x € A, then the sequence x, x, x, ..... IS a sequence in A converging to x.

If x € D(A) then the open ball B (x %) contains infinite number of points of A.

~ We can choose x,, € B (x %) N A such that x,, # x4, x5, ... ..., X,—1 fOr each n.
=~ (x,,) is a sequence of distinct points in A.
Also, d(x,,x) < %for all n.
YP_I’)IC}O d(x,,x)=0.
~ (xp) = x.
Conversely, suppose there exists a sequence (x;,,)in A such that (x,,) — x.
Then for any » > 0 there exists a positive integer n, such that d(x,,, x) < r for all n = n,.
& x, € B(x,r)for alln = n,.
~Bx,1r)NA+0.
Hence, x € A.
Further, if (x,,) is a sequence of distinct points, B(x,r) N A is infinite.
. x € D(A).
Hence, x is a limit point of A.

Definition : Let (M,d) be a metric space. Let (x,) be a sequence of points in M. (x,,) is said

to be a Cauchy sequence in M if given € > 0 there exists a positive integer n, such that

d(x,, x,) < € forall m,n = n,,.

Theorem 2.13 : Let (M,d) be a metric space. Then any convergent sequence in M is a Cauchy

sequence.
Proof : Let (x,) be a convergent sequence in M converging to x € M.
Let € > 0 be given.

Then there exists a positive integer n, such that d(x,,, x) < Zfor all n = n,.

s d (X, Xn) < d(X, x) + d(x, x3)
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<§+§forall m,n = n,.
= ¢ forall m,n = n,.
Thus, d(x,,, x,,) < € for all m,n > n,.

=~ (xy,) is a Cauchy sequence.

Note : The converse of the above theorem is not true. i.e., any Cauchy sequence need not be a

convergence sequence.

For example, consider the metric space (0,1] with usual metric.
(%) is a Cauchy sequence in (0,1].

But this sequence does not converge to any point in (0,1].

Definition : A metric space M is said to be complete if every Cauchy sequence in M converges

to a point in M.
Example 1: R with usual metric is complete. This is a fundamental fact to elementary analysis.
Note : The metric space (0,1] with usual metric is not complete.

Example 2 : C with usual metric is complete.
Proof : Let (z,,) be a Cauchy sequence in C.
Let z, = x, + iy, Where x,,, ¥, € R.
We claim that (x,,)& (y,,) are Cauchy sequences in R.
Let € > 0 be given.
Since (z,,) is a Cauchy sequence, there exists a positive integer nysuch that |z, — z,,| <
¢ for all n,m = n,,.
Now, [x, — x| < |2, — zp| and [y, — Y| < |2, — 21, |
Hence, |x, — x,,| < e foralln,m = nyand |y, — y,,| < € forall n,m > n,,.
~ (x,) and (y,,) are Cauchy sequences in R.
Since R is complete, there exists x, y € R such that (x,,) = x and (y,,) = y.
Let z = x + iy.
We claim that (z,,) - z.
We have |z, — z| = |(x, + iy,) — (x + iy)|
=G —x) + iy — ¥
<lxp,—xl+ly.—yl (1)
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Now, let € > 0 be given.
Since, (x,) = x and (y,) — y there exists a positive integer n,; and n, such that

xn—x|<§foralln2n1and |y, — vl <§foralln2n2.

Let n; = max{n,,n,}.
From (1) we get |z, — z| <~ +~ forall n = n;.
“(2q) - z.

=~ z 1S complete.

Example 3 : Any discrete metric space is complete.
Proof : Let (M,d) be a discrete metric space.
Let (x,,) be a Cauchy sequence in M.
Then there exists a positive integer n, such that d (x,,, x,,;,) < %for all n,m = n,.
Since d is the discrete metric, distance between any two points is either 0 or 1.
o d(xpy,x,,) = 0 forall n,m > n,.
S Xy = Xp, = x (say) forall n = ny,.
& d(x,,x) = 0forall n > n,.
=~ (xn) - x.

Hence M is complete.

Example 4 :R™ with usual metric is complete.

Proof : Let (x,,) be a Cauchy sequence in R™.

Let (xp) = (xpl,xpz, ...xpn).
Let € > 0 be given.
Then there exists a positive integer n, such that d(x,, x,) < & for all p, g = n,.
o =1y, — qu)2]1/z < eforall p,q = n,.
k=1(xp, — xq,)° < g*forall p,q = n,.
~ For eachk=1,2, ....., n we have |ka — qu| < eforall p,q = n,.

* (xp, )is a Cauchy sequences in R for each k=1,2,........ .
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Since R is complete, there exists y;, € R such that (x,, ) = .
Let y = (¥1, Yoy cov ver ve vee eee Vi)
We claim that (x,,) - y.

Since (xp, ) = i there exists a positive integer my, such that |x,, — yi| < % for all
p = my.
Let my = max{m,,m,, ... ....m, }.

Then d(x,,y) = [ZZ:Kka - yk)2]1/2

2112
< [n (ﬁ) ] for all p = m,,.

= ¢ for all p = m,,.
d(xp,y) < gfor all p = m,,.
()~ .
Hence, R™ is complete.
Example 5 :1, is complete.
Proof :Let (x,) be a Cauchy sequence in L,.
Let (xp) = (xpl'po' ...xpn).

Let € > 0 be given.

Then there exists a positive integer n, such that d(x,, x,) < & for all p, g = n,.
[ ne1(Xp, — an)z]l/2 < ¢ forall p,g = n,.

ne1(xp, —xg ) <e*forallp,g=n,. ... (1)
« For each n=1,2, ....., .... we have |x, —x, | < eforallp,q = n,.

= (xp,) is a Cauchy sequences in R for each n.
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Since R is complete, there exists yj, € R suchthat (x, ) = ¥, .oo...e. 2)

Let ¥ = (V1, Yoy cor wer er we eee Vi wee weve )
We claimthat y € I, and (x,) - .
For any fixed positive integer m, we have ¥, (x,, — x,4,)* < e*for all p, ¢ > n,.
[using (1)]
Fixing g and allowing p — oo in this finite sum we get
me1(n — x4,.)* < e?forall g = n,.

Since this is true for every positive integer mY.>_; (y,, — an)z < g%for all g = n,.

o) 2 1 _ o) 272
Now, [ n=1|yn| ]2 - [Zn=1|Yn — Xqn + anl ]
1 1
:[ ® il — an|2]z + [Z%°=1|an|2]2 [By Minkowski’s inequality]
1
< e+ ([Zo|xg, '] forallg 2 ny (by (3)

1
. 272
Since x, € I, we have [Z;‘{’=1|an| ]2 converges.

- (X524 lyn|2T2converges.
Ly E L.
Also (3) gives d(y, x,) < € forall g = n,.
(%) >y
=~ [, is complete.
Note : A subspace of a complete metric space need not be complete.

For example, R with usual metric is complete. But the subspace (0,1] is not complete.
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Theorem 2.14 : A subset A of a complete metric space M is complete iff A is closed.
Proof : Suppose A is complete.
To prove A is closed.
We shall prove that A contains all its limit points.
Let x be a limit point of A.
Then by theorem, there exists a sequence (x,,)in A such that (x,,) — x.
Since A is complete, x € A.
=~ A contains all its limit points.
Hence A is closed.
Conversely, let A be a closed subset of M.
To prove A is complete.

Let (x,,) be a Cauchy sequence in A.

Then (x,,) is a Cauchy sequence in M also and since M is complete there exists x € M

such that (x,) - x.
Thus (x;,) is a sequence in A converging to X.
~ x € A (by theorem)
Now, since A is closed, 4 = A.
L x EA.
Thus every Cauchy sequence (x,,) in A converges to a point in A.

Hence A is complete.

Note 1 : [0,1] with usual metric is complete since it is a closed subset of the complete metric

space R.

Note 2 : Consider Q. Since Q = R, Q is not a closed subset of R.
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Hence Q is not complete.
Solved problems

Problem 1 : Let A, B be subsets of R. Provethat AX B = A X B.
Solution : Let (x,y) EAX B
- There exists a sequence ((xp, ) € A X B such that ((x,, ¥,)) = (x, ).
~ (xp) » xand () - y.
Also (x,,) is a sequence in A and (y,,) is a sequence in B.
~x€Aandy € B.
. (x,y) € AXB.
~AXBCSAxB. . (1)
Now, let (x,y) € A X B.
~x€Aandy€B.
= There exists a sequence (x,,) in A and a sequence (y,,) in B such that (x,) —» x and
() = .
« ((en, ¥))is a sequence in A x B such that ((x,, y,)) = (x, ).
Hence (x,y) EAX B
~AXBCAXB. (2)
From (1) & (2)AX B = A X B.
Problem 2 :If A and B are closed subsets of R. Prove that A x B is a closed subset of R X R.
Solution : Since A and B are closed sets we have A = Aand B = B.
Now, A X B = A x B [By problem 1]

=A X B.

~ A X B is a closed set.

Theorem 2.15 (Cantor’s Intersection Theorem)

Statement : Let (M,d) be a metric space. M is complete iff for every sequence (F,) of non-
empty closed subsets of M suchthat F; 2 F, 2 -+ ... .......2 E, 2 --- ... and (d(F,)) — 0, then

Ny-4 E, is nonempty.
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Proof :Let (M,d) be a complete metric space.
Let (F,)be a sequence of non-empty closed subsets of M such that
FF2F,2....2E, 2 .. ... (1)
and (d(E))-»0 ()
We claim that N, -, F,, # @.

For each positive integer n, choose a point x,, € F,.
By (1), Xp, Xpa1, Xngz woe eoevee w28l lie in By
e, x,, € E, forallm > n.

Since, (d(F,)) — 0, given £ > 0, there exists a positive integer n,, such that
d(E,) < eforall n = n,.

Inparticular d(F,,)) <e. 4)
~d(x,y) <eforall x,y € E,.
Now, x,,, € F,, forallm = n,. [by (3)]

SN2 N = Xy, Xy € By

= d(xm, xn) < € [By (4)]

~ (xy,) is a Cauchy sequence in M.
Since M is complete there exists a point x € M such that (x,,) — x.
We claim that x € N5, E,.

Now, for any positive INteger N, X, Xpi1, Xpgz e oee oee oee oo IS @ SEQUENCE IN

E,and this sequence converges to X.
~ X EE,
But E, is closed and hence F, = E,.

~ X EE,.
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X E n E,.
n=1

Hence, Ny F, # 0.

Conversely, assume that for every sequence (F,) of non-empty closed subsets of M
suchthat F; 2 F, 2 -+ ..........2 F, 2 --- ... and (d(F,)) — 0, then N;-, F, is nonempty.

To prove M is complete.

Let (x,,) be a Cauchy sequence in M.

Let  Fp = {0, X5, X3, e e cee e, Xppy oo }
F2 = {xz,x3, ....,xn,.....}
E, = {xn'xn+1' }

Clearly, F; 2 F, 2« .. ... 2 F, 2 -+

“F2F 2 ... 2E 2

=~ (E,) is a decreasing sequence of closed sets.

Now, since (x,,) is a Cauchy sequence, given € > 0 there exists a positive integer n,,

such that d(x,,, x,,) < € for all n,m > n,.
~For any integer n > n,, the distance between any two points of E, is less than e.
~d(Fy) < eforalln = n,.
But d(E,) = d(F,).
~d(E)<eforalln=n,. L. (5)

~ d(E) - 0.
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Hence, N-, F, # @.
Let x € NS, E,.
Then x and x,, € E,.
~d(xy,x) < E,.
<egforalln =>n, [From (5)]
~ (xn) = x.
~ M is complete.
Note 1 : In the above theorem N, F, contains exactly one point.
For, suppose Ny, F, contains two distinct points x and y.
Then d(F,) = d(x,y) forall n.
~ d(F,) does not tend to zero which is a contradiction.
~ Np=1 F, contains exactly one point.
Note 2 :In the above theorem N, F,, may be empty if each F, is not closed.
For example, consider F, = (0%) inR.
Clearly, F; 2 F, 2 =+ ... ... 2 E, 2 - ... and (d(F,)) » 0asn — oo,
But, Ny~ F, = @.
Note 3 : In the above theorem N, F,, may be empty if the hypothesis (d(E,)) — 0 is omitted.

For example, consider F,, = [n, o) in R.

(V]
e
(V]

Clearly (F,) is a sequence of closed setsand F; 2 F, 2 -+ ... ... ....
Also, N, FE, = Q.

Here, d(F,) = oo for all n and hence the hypothesis (d(F,)) — 0 is not true.
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BAIRE’S CATEGORY THEOREM

Definition : A subset A of a metric space M is said to be nowhere dense in M if IntA = @.

Definition : A subset A of a metric space M is said to be of first category in M if A can be

expressed as a countable union of nowhere dense sets.
A set which is not of first category is said to be of second category.

Note : If A is of first category then A = U;~, E,,where E,is nowhere dense subsets in M.

Example 1 : In R with usual metric A = {1% % } IS nowhere dense.

For, A= AUD(A) = {o,l,é,g, U SO }

Clearly IntA = @.
Example 2 : In any discrete metric space M, any non-empty subset A is not nowhere dense.
For, in a discrete metric space every subset is both open and closed.
~ A = IntA = IntA = A.
~ IntA # Q.
~ A'is not nowhere dense.
Example 3 : In R with usual metric any finite subset A is nowhere dense.
For, let A be any finite subset of R.
Then A is closed and hence A = A.
Also since A is finite, no point of A is an interior point of A/
~ IntA = IntA = 0.
=~ A is nowhere dense.
Example 4 : Consider R with usual metric. Any singleton set {x} is nowhere dense.

~ Any countable subset of R being a countable union of singleton sets is of first
category.
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In particular Q is of first category.

Note : If A and B are sets of first category in a metric space M then A U B is also of first
category.

For, since A and B are of first category in M we have A = U,-; E,andB =

Un=1 Hywhere E,, and H,, are nowhere dense subsets in M.
~ A U B is a countable union of nowhere dense subsets of M.
Hence A U B is of first category.
Theorem 2.16 (Equivalent characterisations of nowhere dense sets
Let M be a metric space and A € M. Then the following are equivalent.

() A is nowhere dense in M.

(i) A dos not contain any non-empty open set.

(iii)  Each non-empty open set has a non-empty open subset disjoint from A.
(iv)  Each non-empty open set has a non-empty open subset disjoint from A.

(v) Each non-empty open set contains an open sphere disjoint from A.

Theorem 2.17 (Baire’s Category Theorem)
Statement : Any complete metric space is of second category.
Proof : Let M be a complete metric space.

To prove M is of second category.

i.e. to prove M is not of first category.

Let (A,,) be a sequence of nowhere dense sets in M.

We claim that U;~; 4,, # M.

Since, M is open and A, is nowhere dense, there exists an open ball B, of radius less

than 1 such that B, is disjoint from A;.
Let F; denote the concentric closed ball whose radius is %times that of B;.

Now Int F; is open and A, is nowhere dense.
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~ IntF; contains an open ball B, of radius less than %such that B, is disjoint from A,.

Let F, denote the concentric closed ball whose radius is %times that of B,.
Now Int F, is open and A5 is nowhere dense.

=~ IntF, contains an open ball B; of radius less than isuch that B is disjoint from As.

Let F; denote the concentric closed ball whose radius is %times that of B;.

Proceding like this we get a sequence of non-empty closed balls E, such that F; 2

1
F 2 n..2 2. and d(E,) < vt

Hence (d(E,)) » 0 asn — o.

Since, M is complete, by Cantor’s Intersection theorem, there exists a point x in M

such that x € Ny~ E,.
Also, each E, is disjoint from A,,.
Hence, x¢ A, for all n.
s x € Uy Ap.
s~ Une1 A = M.
Hence M is of second category.
Corollary : R is of second category.
Proof : We know that R is a complete metric space. Hence R is of second category.
Note : The converse of the above theorem is not true.
i.e., A metric space which is of second category need not be complete.
For example, Consider M=R-Q, the space of irrational numbers.
We know that Q is of first category.

Suppose M is of first category. Then MUQ=R is also of first category which is
a contradiction.
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Hence, M is of second category.
Also M is not a closed subspace of R and hence M is not complete.

Exercises

Determine which of the following statements are true and which are false.
In R with discrete metric Z is a bounded set.
In R with usual metric Z is a bounded set.
In a discrete metric space every subset is bounded.
A subset of a metric space is bounded iff its diameter is finite.
A non-empty subset of a metric space is bounded iff its diameter is finite.
Any open ball is a non-empty set.
Any open ball is a bounded set.

In a discrete metric space M any open ball is either a singleton set or the whole space.

© o N o g bk~ wbh -

In R with usual metric [0,1) is neither open nor closed.

10. A set is closed iff its complement is open.

. Prove that any nonempty open interval (a,b) in R is of second category.

1. Prove that a closed set A in a metric space M is nowhere dense iff A€ is everywhere
dense.

IV.  Prove that union of a countable number of sets which are of first category is again

of first category.
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UNIT 111
CONTINUITY
Definition:
Let (My,d1) and (Mz2,d2) be two metric spaces. Let f: M1 — M2 be a function. Let
a€ Mziand [ € M. The function f is said to have the limit [ as x—a if given € > 0 there exists

& > 0 such that 0<di(x,a)<é = d2(f(x), [)< €. We write lim f(x)= L.
X—a

Let (My,d1) and (M2,d2) be the two metric spaces. Let a€ My. A function f:M1—»M>

is said to be continuous at a if given € > 0 there exists § > 0 such that di(x,a)<é =

d2(f(x),f(a))< €. fis said to be continuous if it is continuous at every point of M.
Note:

1. fis continuous at a iff lim f(x) =f(a).
X—a

2. The condition di(x,a)<é = d2(f(x),f(a))< € can be rewritten as

i. x€B(ad)=f(x)€ B(f(a),e)or
ii. f(B(a,8)) €B(f(a),¢)

Examples:
1. Let :M1—>M:be given by f(x)=a where ae Mz is a fixed element.
Proof:
Let xeM; and € > 0 be given
Then forany § > 0, f(B(x,8)) ={a} € B(a,¢) = B(f(x),¢)
~ f(B(x,6)) € B(f(x),¢)

Since XxeMy is arbitrary, f is continuous.
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2. Let (Mydi) be a discrete metric and (M,,d,)be any metric space.
Them any function f:M1—M: is continuous i.e, any function whose domain is a discrete metric

space is continuous.
Proof:

Let xeM: and € > Obe given
Since M is discrete, forany § > 1, B(x,6) = {x}
fB(x,6)) = f(x) € B(f(x),¢€)

Since xeM; is arbitrary, f is continuous.
Theorem 3.1

Let (My,d1) and (Mz,d2) be the two metric spaces. Let a€ My. A function f:M1—»M>
is continuous at a iff (xn)— a =(f(xn))—f(a)
proof:
Assume that f is continuous at a.
Let (xn) be a sequence in My such that (xn)— a
We claim that (f(xn))—f(a)
Let € > Obe given
By the definition of continuity, there exists § > 0 such that
di(x,)<é = di(f(x),f(a))< & -------------=----- (1)
Also (xn)— a there exists a positive integer no such that di(xn,a)<é for all n>n,
~02(f(xn),f(2))< € for all n>n, [from(1)]
~(f(xn))—f(a)
Conversly, assume that (Xn)— a =(f(xn))—f(a)
We claim that f is continuous at a.
Suppose f is not continuous at a.

Then there exists € > 0 such that for all§ > 0
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(f(B(a,8)) ¢ B(f(a),€)
In particular, (f(B(a,.)) ¢ B(f(a),£)
Choose Xa such that x,, € B(a,=) and f(x,) & B(f(a),¢)
xn € B(a,2) = d1(xy,a) <.~
f(xn) € B(f(a),€) = d2(f (x,), f(a)) > &
= (f(x)) +# f(a), which is a contradiction to our assumption.
= f is continuous at .
Corollary:
A function f:M1—Mais continuous iff (x,,) > a = (f(x,)) - f(x).
Theorem 3.2

Let (M1,d1) and (M2,d2) be the two metric spaces. Let a€ M1. A function f:M1—>Mais
continuous iff f1(G) is open in M1 whenever G is open in M. ie, f is continuous iff inverse

image of every open set is open.
Proof:
Suppose f is continuous
Let G be an open set in M;
We claim that f(G) is open inM1
If f1(G) is empty, then it is open.
Let f1(G)= ¢
Let xe F1(G)
Hence f(x)e G.
Since G is open, there exists an open ball B(f(x),¢) such that B(f(x),e)cG -------- Q)

Now by definition of continuity, there exists an open ball B(x,§) such that
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f(B(x.6)) € B(f(x), )
~f(B(x,6)) €G  [by(1)]
~B(x,8)) € f1G)
Since xe fY(G) is arbitrary, £(G) is open.
Conversly, suppose f1(G) is open in M1 whenever G is open in Mo.
We claim that, f is continuous
Let XxeM:
Now B(f(x),e) is a open set in M2
=~ FY(B(f(x),£)) is open in My and xef*(B(f(x),¢))
There exists § > 0 such that B(x,6)< f*(B(f(x),¢))
~ f(B(x,6))SB(f(x),)
=~ fis continuous at x.
Since xeM; is arbitrary, f is continuous.
Note:

1.1f :M1—M2 is continuous and G is open in Mz then it if not necessary that f(G) is

open in M..ie, under a continuous map the image of an open set need not be an open set.
For example:

Let M1=R with discrete metric and M>=R with usual metric.

Let f:M1—M: be defined by f(x)=x.

Since M; is discrete every subset of M is open.

Hence for any open subset G of M,, f1(G) is open in M;

=~ fis continuous
Now, A={x} is open in My but f(A)={x} is not open in M,
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2.In the above example, f is continuous bijection whereas f*:M1—M. is not continuous.
For,{x} is an open set in My,
(FHL({x})={x} which is not open in M,
= 1 is not continuous.
Thus if fis a continuous bijection f-1 need not be continuous.
We now give wet another characterization of continuous function in terms of closed sets.
Theorem 3.3

Let (M1,d1) and (M2,d2) be the two metric spaces. A function f:M1—M; is continuous
iff f1(F) is closed in My whenever F is closed in M,

Proof:
Suppose f:M1—Mz is continuous
Let FS M. be closed in M2
~F¢ is open in M2
~ FY(F°) is open in M
But f1(F%) =[f*(F)]°
f1(F) is closed in M.
Conversely, We claim that f is continuous
Let G be an open set in M;
=~ GCis closed in My
~F1(G) is closed in My
[FY(G)]¢ is closed in M
[FY(G)] is open in M

~[fY(G)] is open in M1, whenever f is continuous
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G is open in M;
We give one more characterization of continuous function in terms of closure of a set.
Theorem 3.4

Let (My1,d1) and (M2,d2) be the two metric spaces. Let a€ M1. A function f:M1—»M: s
Continuous iff f(A)<S f(A) for all ASM..

Proof:
Suppose f is continuous
LetACM; then f(A)SM>
Since f is continuous, F2( £(4) ) is closed in My
Also, f1( f(A) )2A [+ F(A) 2f(A)]

But A is the smallest closed set containing A

~ACT(f(A))

~f(A)c f(4)
Conversely, let f(A)< f(A) for all ACM;
To prove fis continuous,

We shall show that if F is closed set in M then f1 is closed in M1

By hypothesis f(f~*(F)) < f f~1(F)

CF

1]
Tn

Thus, f(f~1(F) € F
(f1(F) s F(F)
Also fY(F)c(f~*(F)

+FH(F)= F(F)
Wanowmaniam Sundaranar University, Dinectorate of Distance and (ontinuing Education, Torunelvele 63



Hence f1(F) is closed. Hence, f is continuous
Problem:1
Let f be a continuous real value function defined on; a metric space M. Let
A={xeM: f(x)=>0}. Prove that A closed.
Solution:
A= {xeM: f(x)=>0}
= {xeM: f(x)€[0,0)}
= £([0,00))
Also [0,00) is closed subset of R
Since f is continuous
f1[0,00) is closed in M
~ Ais closed
Problem:2

0, if xisirrational

] . ) is not continuous
1, if x isrational

Show that function f: R—Rdefined by f(x)= {

by each of the following methods.

i. Bytheusual &,6 method
ii. By the exhibiting a sequence (x») such (xn)—X and (f(x»)) does not converge to
f(x)
iii. By the exhibiting an open set G such that F(G) is not open

iv. By exhibiting a closed subset F such that f1(F) is not closed

v. By exhibiting a subset of A of R such that f(4) ¢ f(4)

Solution:

I To prove f is not continuous at x

We have to show that there exists an £ > 0 such that for all § > 0,
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f(B(x,8))zB(f(x),¢)

Let£=l
2

For any § > 0,B(x,6)=(x—4 ,x+48) contains both rational and irrational numbers

If x is rational, choose y€ B(x, §) such that y is irrational and if x is irrational, choose

YE B(x, §) such that y is rational

Then |[f(x) — f(y)I=1  [by the definition of f]
i.e, d(f(x),f(y))=1
~ f() € BUF(2),5)

Thus ye B(x, 8) and f(y)& B(f(x),?)

Hence f is not continuous at x

Let Xxe R

Suppose X is rational then f(x)=1
Let (xn) be a sequence of irrational numbers such that (x,)— x
Then (f(xn))— Oand f(x)=1
~(f(xn)) does not converges to f(x)

Proof is similar if x is irrational

o e(2. )
Clearly G isopeninR
Now, f1(G) = {x€ R: f(x) € G}

13

={xe R:f(x) € (7.3))
=Q
But Qis not openinR
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Thus f1(G) is not open in R
=~ fis not continuous
(\2 Choose F:E Z]
Then f1(F)=Q which is not closed in R
=~ fis continuous
V. Let A=Q. Then A=R
~f(A)=f(R) ={0,1} [by definition of f]
Also, f(A)=f(Q)={1}
~ FA@={T}={1}
fA) ¢ f(4)
=~ T is not continuous

Problem:3

Let M1, M2, M3 be a metric spaces. If :M1— M, and g: M>— M3 are continuous
function. Prove that gof: M1— M3 is also continuous. i.e, Composition of two continuous

functions is also continuous.
Solution:
Let G be open in M3
Since g is continuous, g*(G) is open in M;
Now, since f is continuous, f(g*(G)) is open in M1
ie, (gof)™(G) is open in M
=~ gof is continuous

Problem:4
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Let M be a metric space. Let M— R and g:M— R be two continuous functions.
Prove that f+g:M— R is continuous.

Solution:
Let (Xn) be a sequence converging to X in M
Since fand g are continuous functions, (f(x»))—f(x) and (g(xn))—g(x)
~(f(xn)+9(xn)) — £ (X)+9(X)
ie, ((f+g)(xn)) — (f+9)(¥)
=~ f+g is continuous
Problem:5

Let f, g be continuous real valued functions on a metric space M. Let

A={x:xe M and f(x) < g(x)}. Prove that A is open.
Solution:

Since fand g are continuous real valued functions on M, f—g is also a continuous real

valued function on M.
Now, A= {x: Xé M and f(x) < g(x)}
= {x:xe M and f(x) — g(x) < 0}
={X:Xe€ M and (f — g)(x) € (—,0)}
= (f=g9){(=, 0)}
Now, (—,0) isopen in R and f — g is continuous
Hence (f — g)™{(~o, 0)} is open in M
~ AlisopeninM
Problem:6

If f:-R— R and g:R— R are bothe continuous functions on R and if h:R?>—R?

is defined by h(x,y)=(f(x),g(y)). Prove that h is continuous on R?
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Solution: Let (xn,Yn) be sequence in R? converging to (x,Y)
We claim that (h(xn,yn)) converges to h(x,y)
Since (Xn,Yn)— (x,9) in R%, (Xn)— (x) and (yn)— () in R?
Also fand g are continuous.
~ (f(xn))= f(x) and (g(yn))—> g(»)
= (f(xn),g(yn)) = (f(x).9(¥))
= (N(xn,yn))—=h(x.y)
= h is continuous on R?
Problem:7

Let (M,d) be a metric space. Leta€e M. Show that function :M—R defined by

f(x)=d(x,a) is continuous
Solution:

Let xe M
Let (xn) be a sequence in M such that (xn)— (x)
We claim that (f(xn))— f(x)
Let € > 0 be given
Now, |f(xn)—f(X)|= |d(Xn,a)—d(X,a)|
< d(xn,X)
Since (xn)— (x) there exists a positive integer ny such that d(xn,x)< ¢ for all n> ny
[f(xn)—f (x)| < € for all N> n;
(f(xn))= f ()

~ fis continuous
Problem:8

Let f be a function from R? onto r defined by f(x,y)=x for all (x,y)€ R?. Show that f is

continuous in R?.

Solution:
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Let (X,y)E R?
Let((xn,yn)) be a sequence in R converging to (x,y).
Then (xn)— (x) and (yn)— ().

“ (f(xnyn))=(n)—= (x) = f(x,¥)

~ (f(nyn))= f(x,¥)

~ f is continuous

Problem:9

Define f: I,—>1> as follows. If S€ [ is the sequence S1,So....... Let f(S) be the sequence
0,S1,Ss,..... Show that fis continuous
Solution:

Let y=(y1,Y2,....... ,yn)El2
Let (xn) be a sequence in |, converging to y
Let Xn=(Xn1,Xn2,.....,Xnk,...)
Then (Xn2)-Y1 , (Xn2) >Yz,....... s (Xnk) =Yk
o (f(xn))=((0, Xn1,Xn2,- ..o Xnks - --))=(0, Y1,¥2,. - ..., ¥ks... ) =H(Y)
= (f(xn))—1(y)
= T is continuous
Problem:10
Let G be an open subset of R. Prove that the characterization function on g defined

by xo(x) = {(1) z;i Z g is continuous at every point of G

Solution:
Let X€ G so that y;(x)=1
Let € > 0 be given
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Since G is open and xe G, we can find a § > 0 such that B(x,8)< G
“ X6(B(X,6))E x6(G)
={1}
= B(1,¢).
Thus y;(B(x,8))SB(x¢(X),€)
Homeomorphism

Let (M1,d1) and (M2,d2) be two metric spaces. A function f:M1— M is called a
homeomorphism if
i. fis1-1andonto
ii.  fiscontinuous

iii.  fliscontinuous

The metric spaces M:and M are said to be homeomorphic if there exists a homeomorphism

f: Ml b MZ .
Definition:

A function f:M1— M; is said to an open map if f(G) is open in M for every open set ¢
in Mz. ie, fis an open map if the image of an open set in Mz is an open set in M2. A function
f:M1— M;is said to be a closed map if f(G) is closed in M for every closed set G in M. ie, f

is a closed map if the image of a closed set in My is a closed set in Ma.

Note 1 : Let :M1— M be a bijection, then f* is continuous iff f is an open map.

Proof:
f1:M1— M is continuous iff (f1)(G) is open in M2 whenever G is open in M.
iff f(G) is open in M2 whenever G is open in My,
iff G is open in M1 whenever f(G) is open in Mo,
iff f is an open map.

= f1is continuous iff f is an open map.
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Note 2 : Similarly, f* is continuous iff f is a closed map
Note 3 : Let :M1— M be a bijection, then the following are equivalent

i.  fisahomeomorphism
ii.  fisacontinuous open map

iii.  fisacontinuous closed open

Note 4 : Let f:Mi1— M> be a homeomorphism, f is a homeomorphism iff it satisfies the

condition F is closed in My iff f(F) is closed in My

Note 5 : Let f:M; — M, is a bijection then f is a homeomorphism iffit satisfies the condition
F is closed in M,iff f(F) is closed in M,

Examples: 1
The metric space [0,1] and [0,2] with usual metric are homeomorphic.
Proof:

Define f:[0,1] — [0,2] defined by f(x)=2x.

f)=f) = 2x=2y=> x=y

~ f isone-one

For all ye [0,2] there exist xe [0,1] such that f(x) =y

=> 2x=y

=>x =

N

€ [0,1]. ~ fisonto
=~ f is bijection.
Clearly f is continuous.

Also =1 (x) :E is also continuous.

=~ fis homomorphism.
Examples:2
The metric space is (0,00) and R with usual metrics are homeomorphic.
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Proof: Define f: (0,00)—R defined by f(x)=log, X

Now , f(x)=f(y) =log. x=log. y

—eloge x=glogey

= X=y
f is one- one

For all yeR there exist x€(0,0) such that  f(x)=y

=log. X=y

=el0geX = o¥

= x=eY €(0,:)

~fis onto

=~ fis bijection

Clearly f: (0,00)—R defined by f(x)=log, X is continuous.

f~1:(0,00)—R defined by f(x)=e* is continuous.

=~ fis homeomorphism.
Example :3
The metric space (_”/2,”/2) and R with usual metric are homeomorphic.
Proof: Define f: (T™/,,™ /5) >R defined by f( x)=tanx.

f(x)=f(y) =tanx =tany
= Xy
f is one- one

For all yeR there exist x€(T7 /5,7 /,) such that  f(x)=y

Stanx=y = x=tan"y €(T/,, /)
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=~ fis onto
=~ Tis bijection
Clearly f: (T™/,,™/,)—R defined by f(x)=tan x is continuous.
fHR-(T1/,,™/,) defined by f(x)=tan~"y is also continuous.
=~ Tis homeomorphism.
Example:4
R with usual metric is not homeomorphic to R with discrete metric.
Proof: Let M,=R with usual metric
Let M,=R with discrete metric
Let :M1— M> be any bijection
Now, {a}is open in M2, but f~*({a}) is not open in M.
=~ Tis not continuous
Thus any bijection f:Mi1— M2 is not homeomorphism.
Hence M: is not homeomorphism to M>
Example:5
The metric spaces (0,1) and (0,00) with usual metric are homeomorphic.

Proof: Define f:(0,1) — (0,00) defined by f(x) ::_x

f(x)=1(y) =>ﬁ =%
= X(1-y) =y(1-x)
=X-XY = y-Xy

>X=y

For all ye(0,00) there exist xe(0,1) such that f(x)=y
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Sx=—2—
1+y

~fisonto
=~ Tis bijection
Clearly f is continuous.

L %x is also continuous.

=~ fis homeomorphism.

Definition: Let (M1,d,) and (M2, d,) be two metric spaces.Let f: M1i— M be any bijection
fis said to be isometry if d;(x,y) = d,(f(x), f(y)) for all x,ye M

In other words an isometry is an distance preserving map Miand Mare said to be isometric if

there exists an isometry f:Mionto M»

Examples:

1. R? with usual metric and C with usual metric are isometric and f:R?>— C defined
by f(X,y)= x+iy is a required isometric.
2. Let d; be the usual metric on [0,1] and d> be the usual metric on [0,2] be map

f:[0,1]—]0,2] defined by f(x)=2x is not a isometry.

do(f(x), f(y)=If (x) — f (¥
= |2x = 2y|
=2[x -y
= 2d1(x,y)
- du(x,y) #d2(f(x),f(y))
~ fis not a isometry.
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Note:
Since an isometry f preserves distances, the image of an open ball B(x,r) is the open

ball B(f(x,r)).
Uniform Continuity:

Let (M1 d;) and (M2,d,) be two metric spaces. A function f:M;— M> is said to be

uniformly continuous on My if given & > 0, there exists § > 0 such that di(x,y)<é =
d2(f(x),f(y))< e.

Note:1
Uniform continuity is a global condition on the behaviour of a mapping on a set.

Continuity is a local condition on the behaviour of function at a point.

Note 2: If f: Mi — M: is uniformly continuous on M, then fis continuous at every

point of M, but a continuous function need not be uniformly continuous on M,.

SOLVED PROBLEMS

Problem 1: Prove that f: [0,1] — R defined by f(x) = x2 is uniformly continuous on
[0,1].
Solution:
Let € > 0 be given.
Let X,y € [0,1]
Thenx<1,y<1
[f(X) - f(y) = [x* - y2|
=[x-yl [x+Y
<2x-Yy
Letd=¢/2
Ifx -yl < 8= = If(X) - fiy)| < ¢

= fis uniformly continuous on [0,1]

Problem 2 : Prove that f: (0,1)—R defined by f(x) = % is not uniformly continuous.

Solution:

Let € > 0 be given.
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Suppose there exists 6 > 0 such that [x - y| <6 = [f(X) - f(y)| <e
Given f(x) = 1/x,

1 1

L—5l<¢
Takex = y +g=>x— y=g

Clearly |x — y| = %6 < 6.
AlfO - fOl<e

K l — l| < £.
Xy
1 1
. y—+g ~5 <¢&g
)
y=(v +3)
5 <e¢
(v +3)
. 6 <
. —(S &
2(v+3)y
GzrmA
E.
2y + &)y
This inequality cannot be true for all y € (0,1). Since (nyg)y becomes arbitrarily large
as y approaches zero.
=~ fis not uniformly continuous.
Problem 3 : Prove that the function f :R — R defined by f(x) = sin x is uniformly
continuous on R.
Solution:
Letx,y ERand x>y.
By Mean Value Theorem,

sinx-siny=(x-y)cosz where x >z> y.

= [f(x) - f(y)| = |sin X - siny|
= |x - yl|cos ]|

<fx-ylx 1
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=x-y

Hence for a given € > 0, if we choose 6= &, we have

X - yI< 8=|f(X) - f(y)| = [sin X - siny| < ¢

=~ f(x) = sin x is uniformly continuous on R.

Discontinuous functions on R
A function f: R — R is said to approach a limit [ as x — a if given € > 0 there exists

d>0suchthat 0 <|x-a|<d= [f(X) - | <¢eand we write lim f(x) = L.
X—a

Definition:
A function f is said to have [ as the right limit at x = a if, given &€ > 0, there exists

d0>0suchthata<x<a+0 = [f(X)-!]|<¢eand we write lim+ f(x) = L
X—a

Also, we denote the right limit by f(a+).
A function f is said to have [ as the left limit at x = a if, given € > 0, there  exists

0>0suchthata-d<x<a=[f(X)-1l|<eand we write lim f(x) = L.

X—a-—

Also, we denote the left limit by f(a-).

Notes:

1. lim f(x) exists if and only if the left and right limits of f(x) at x = a exist and are equal.

X—a

2.The definition of continuity of fat x = a can be formulated as follows:

f is continuous at a if and only if f(a+) = f(a-) = f(a).

3. If l)grel1 f(x) does not exist, then one of the following must hold:
0] }(eral f(x) does not exist.
(i) )}Lr?_ f(x) does not exist.
(i) }(ijg1+f(x) and )}Lr?_ f(x) exist but are unequal.

Definition If a function f is discontinuous at a, then a is called a point of discontinuity
for the function.
If a is a point of discontinuity of a function f, then any one of the following cases arises:

(i) lim f(x) exists but is not equal to f(a).
X—a

(i) lim_f(x) and lim f(x) exist and are not equal.
X—a X—a—

(iii) Either lim f(x) or lim f(x) does not exist.
X—a— X—a
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Definition : Let a be a point of discontinuity for f(x), then a is said to be a point of

discontinuity of the first kind if lim+ f(x)and lim f(x) exist and both of them are finite
xX—a x—->a—

and unequal.

The point a is said to be a point of discontinuity of the second kind if either if

lim+ f()orif lim f(x) does not exist or is infinite or if lim f(x) does not exists.
xX—a X—>a— X—>a—

Definition : Let A CR. A function f: A — R is called “monotonic increasing” if x <y =

f&) < f).
f is called monotonic decreasing if x >y = f(x) = f(y).

A function f is called “monotonic” if it is either monotonic increasing or monotonic

decreasing.

Theorem 3.5 Let f: [a, b] — R be a monotonic increasing function.Then f has a left limit at
every point of (a, b). Also f has a right limit at a and f has a left limit at b. Further x <y =f(x

+) <f(y-). Similar result is true for monotonic decreasing function.
Proof: Let f: [a, b] — R be monotonic increasing.

Let x € [a, b].

Then {f(t): a <t <x} is bounded above by f(x).

Letl=1Llub {f(t): a<t<x}

We claim that f(x-) = L.

Let € > 0 be given. By definition of l.u.b there exists t such that a <t < x and

l—e<f(t)<L
Mfu<x=1-e<f{t) <flu) <f(x)
(- f is monotonic increasing).
=>l-e<flu)<l
sX—0<u<x=>!l-eg<fluy<lwhered=x-t
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~f(x-)=1L
Similarly, we can prove thatf(x+) = g.Lb {f(t): x <t <b}
Similarly, let f: [a, b] — R be monotonic decreasing.
Let x € [a, b].
Then {f(t): x <t <b} is bounded below by f(x).
Let{ =g.Lb {f(t): x <t<b}.
We claim that f(x+) = L.
Let € > 0 be given. By definition of g.1.b there exists t such that
x<t<band [ <f(t)<l+e.
~t<u<x=[<Af(t)<f(u) <l+e(~ fis monotonic decreasing)
=>[<fluy<l+e
sx<u<x+d=[<flu)y<l+ewhered=x-t.
s f(x+) = L.
Now we shall prove that x <y =f(x +) < f(y -)
Letx<y
fix+)=glb {f(t): x<t<y}
=glb {flt): x<t<y} (1)
fly-)=Lub {f(t): a<t <y}
=Lub {flt): x<t<y} (2)
From (1) & (2) we get fix +) < f(y -)

Theorem 3.6 : Let f: [a, b] — R be a monotonic function. Then the set of points of [a, b] at

which f is discontinuous is countable.

Proof: Let E = {x: x € [a, b] and f is discontinuous at x}
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Letx€E
f(x+) and f(x—) exists andf(x—) < f(x+)
If f(x—) = f(x+), then f(x—) = f(x+) = f(x)
=~ fis continuous at x, which is a contradiction to f(x—) # f(x+)
s Af(x—) < f(x+)
Now choose a rational number r(x) such that f{x—) <r(x) < f(x+)
This defines a map r: E — Q which maps x to r(x)
We claim that r is 1-1.
Let x; < x,.
By the previous theorem: X <y = f(x+) < f(y—)
&xq <Xy = f(xy+) < f(x,-)
Also f(x; =) <7r(xy) < flxqg H)and f(x, =) <r(xy) < flxy +).
ar(ay) < flo ) < flx, =) <r(xy)
Thus x; < x,=7(x;) < r(xy).
~rE->Qisl-1
Hence E is countable.

Definition : A subset D of R is said to be of type Fo if D can be expressed as the countable

union of closed sets.i.e., D =U;Z, F, where F, is a closed subset of R.

Notes:
1. Any closed subset F is of type Fo since F=U,~; F, where E, = F for all n.
2. A set of type Fo need not be closed.

Example: Q is of type F, but Q is not closed.
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Definition : Consider any function f: R — R. Let | be a bounded open interval in R. Then the

oscillation of f over I is denoted by o(f, I) and it is defined by

w(f,) = lub{f(x):x € I} — g.lL.Lb{f(x):x € I}.

If a €R, then the oscillation off at a is denoted by w(f, a)and it is defined by w(f,a) =

g-l.bw(f,I) where the g.l.b is taken over all bounded open intervals  containing a.
Note:
l.ForanyneZ w(f,n) = 1.
2. From the definition w(f,I) = 0 forany .
Hence w(f,a) = 0 foranya€R.
Theorem 3.7 : A function f: R — R is continuous at a € R iff w(f,a) = 0.
Proof:
Suppose f is continuous at a.
To prove w(f,a) = 0.
Let € > 0 be given.
Then there exists d >0 such that |[x — a|] < § = |f(x) — f(a)| < €/2
Letl = (a — §,a + 6)

Foranyx € IIf(x) - f(a)| <

IfG) = FI = If () = f(@ + f(@) = fO)
S If@ - f@l + If0) - f(@l
<e/2+¢€/2=c¢
Foranyx,y € LIf(x)— f()I< ¢
co(f,]) < €

~g.Lbw(f,I) < ¢
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i.e.,w(f,a) < ¢
Since € > 0 is arbitrary, w(f,a) = 0.
Conversely, assume that w(f,a) = 0.
To prove f is continuous at a.
Let € > 0 be given.
We have w(f,a) = 0.
= g.l.bw(f,I) = 0.
=~ There exists a bounded open interval | containing a such that 0 < w(f,I) < e.
Let x4, x5 € I.
Thenf(xq) < Lu.b{f(x): x €l}and f(xz) = g.l.b{f(x): x €1}
= —f(x) < —g.Lb{f(x): x €1}
= |f(x) — f(x)| < Llub{f(x): x €1} — g Lb{f(x): x €1}
= w(f,]) < ¢
S Af() = fx)l < €
In particular, [f(x) — f(a)|] < € forallx € I
Since I is a bounded open interval containing a, we can choose & > 0 such that
(a—46,a+d <l
S |f(x) = f(a)| < eforall€ (a — §,a + §)
sl —al <8 = [f(x) - fla)] < e
=~ f is continuous at a.
Theorem 3.8 : Let f: R — R be any function. Let r > 0.
ThenE, = {a € R|w(f,a) = 1/r}isaclosed set.

Proof: Let x be any limit point of E,.
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We claim that x € E,..
For this, we must prove that o(f, x) > 1/r.

Now let | be any bounded open interval containing X.
Since x is the limit point of E,, | contains a point y of E..
Hence | is a bounded open interval containing y.

~o(f,y) < o(f,D)
Sincey € E,w(f,y) = 1/r
~ we have w(f,I) = w(f,y) = 1/r
This is true for any bounded open interval | containing Xx.
~ow(f,x) = 1/r
. x € E;
=~ E; contains all its limit points.
Hence E. is closed.

Theorem 3.9 : Let D be the set of points of discontinuities of a function f: R — R. Then D

is of type Fo.
Proof: Let D be the set of points of discontinuities of f.
To prove: D is of type Fo.
i.e., To prove D = U;Z E,,, where E,, ={a € R | o(f, a) > 1/n} is closed.
Let x € D.
=~ fis discontinuous at x.
~o(f, x) > 0.
=wo(f, X) > 1/n for some n > 0.

~ X €E,, for some n> 0.
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~ X €EURL, Ey.

xXeED=>x€eUy, E,

~DCUZLE, (1)
Let x U, E,

X € E,, for some positive integer n.

~o(f, x) > 1/n for some n> 0

Hence o(f, x) >0

=~ fis discontinuous at x.

Hence x € D

X €Uy~ E,=Xx€D

“Up, E,€D—(2)

From (1) & (2),

D =UnZ, En

Also each E,, is closed.

Thus D is a countable union of closed sets.
~ D is of type Fo

Theorem 3.10 : There is no function f: R — R such that f is continuous at each rational

number and discontinuous at irrational number.
Proof: Suppose A is of type Fo.
Then A = U;-, E, where each Fn is closed.
Now, since Fn contains only irrational number, Fn cannot contain any open interval.
~IntFn=¢
Int Fn=¢ [+Fn is closed]
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~ F, is nowhere dense
=~ Ais of first category, which is a contradiction.
=~ A is not of type Fo.

Hence, the theorem.

Exercises

1.

2.

—2ifx<0

2ifx=0" Prove that f is not continuous.

Let f: R — R be defined by f(x) = {

Let (M,d) be any metric space. Let f:M — R and g: M — R be any two continuous
functions. Define
O (9@ =fx)gx)
(i) (cf)(x) = cf(x) where c € R.
f _ =,
(iii) (g) () = L2 if ()0 for all xe M.

Prove that fg. cf and f/g are all continuous.

Give an example of a map from R to itself which is continuous and closed but not an
open map. [Hint : Consider any constant map]

Let (M,d) be any metric space. Prove that the identity map i:M - M is a
homeomorphism.

Determine which of the following functions are uniformly continuous.

(i) f: R > R defined by f(x) = kx where k € R.

(i)  f:R - R defined by f(x) = x3.

(iii)  :(0,1) - R defined by f(x) = —.

Let f:R = R and g: R — R be two functions uniformly continuous on R. Prove that
f + g is also uniformly continuous on R.

Is the product of uniformly continuous real valued functions again uniformly

continuous?
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UNIT IV

CONNECTEDNESS

Definition: Let (M, d) be a metric space, then M is said to be connected if M cannot be
expressed as the union of two disjoint non-empty open sets. If M is not connected it is said to

be disconnected.
Examples:

1. Let M=[1,2] U [3,4] with usual metric. Then M is disconnected.
Proof: [1,2] & [3,4] are open in M.
Also, A=[1,2]#®;B=[3,4]#0P & ANB=0®
Thus, M is the Union of two disjoint non-empty open sets.
2. Inadiscreate metric space M with more than one point is disconnected.
Proof: Let A be a proper non-empty subset of M.
Since M has more than one point such a set exist.
The A® is also non-empty.
Since M is discrete every subset of M is open.
~A& AC are open.
Thus, M=AU A®, where A& A® are two disjoint non-empty open set.

~M is not connected.

THEOREM 4.1: Let (M, d) be a metric space. Then the following are equivalent.

Q) M is connected.
(i) M cannot be written as the union of two disjoint non-empty closed sets.

(iii) M cannot be written as the union of two non-empty sets A&B such that ANB=
ANB = ®.
(iv)  M& @ are the only sets which are both open & closed in M.

Proof: (i)=>(ii)
Assume that M is connected.

To Prove: M cannot be written as the union od two disjoint non-empty closed sets.
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Suppose M can be written as the union of two disjoint non-empty closed sets.
~M=AUB, where A&B are closed,
A+ D, B£D & ANB = .
Since, ANB=®, A°=B, B°=A.
Since, A&B are closed, A® & B are open.
~ B & A are open.
~ M=AUB, where A&B are open, A+ ®, B ® & ANB = ®.
~ M is disconnected. which is a contradiction.
=~ Our assumption is wrong.
Hence, M cannot be written as the union of two disjoint non-empty closed sets.
(ii)=>(iii)
Assume that M cannot be written as the union of two disjoint non-empty closed sets.

To Prove: M cannot be written as the union of two disjoint non-empty sets A&B such
that ANB= ANB = ®.

Suppose M can be written as the union of two disjoint non-empty sets A&B such that
ANB= ANB = ®.

We claim that A & B are closed sets.
i.e.)., To Prove: A=A & B=B.

Let xEA

We have ANB= @.

X & B

~ x € A (since, AUB=M)

~ ACA
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Always A CA

Hence, A= A

Letx €B

We have AN B = ®.

X EA

Since AUB=M, x € B, x €A
~BCB

Always B € B

~B=B

Also, ANB= ANB = ®.

~ M can be written as the union of two disjoint non-empty sets, which is acontradiction to our

assumption.

Hence, M cannot be written as the union of two non-empty sets A&B such that ANB=
ANB = ®.

(iif)=>(iv)

Assume that M cannot be written as the union of two non-empty sets A&B such that
ANB= ANB = ®.

To prove M & @ are the only sets which are both open & closed in M.
Suppose M & @ are the only sets which are both open & closed in M is not true.
Then there exists ASM such that AZM & A#® & A is both open and closed.
Let B= A®
Then B is also both open and closed & B#®.
Also, M=AUB
Further, ANB =ANAC= ®. [since, A is closed, A= A & B= A°]
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Similarly,
If A= B¢, then ANB=0
- M=AUB, where ANB= ANB =.
which is contradiction to (iii)
=~ Our assumption is wrong.
Hence (iii)=>(iv).
(iv)=>(i)

Assume that M is connected.
Prove that M & @ are the only sets which are both open & closed in M.

Suppose M is not connected.

~ M=AUB, where A#®, B#®, A& B are open and ANB =0.
Then B€=A.

Now, Since B is open, BC is closed.

~ Ais closed.

Also, A#® & A#M.

~ A is the proper non-empty subset of M which is both open & closed which is a

contradiction to both.
Hence, (iv)=>(i).
EQUIVALENT CHARACTERIZATIONS FOR COMPACTNESS

Theorem 4.2 : A metric space M is connected iff there does not exist a continuous function f:

M onto the discrete metric space {0, 1}.
Proof: Suppose M is connected.

To prove: there does not exist a continuous function f: M onto the discrete metric space

{0, 1}.
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Suppose there exists a continuous function f: M onto {0, 1}.
Since {0, 1} is discrete, {0} and {1} are open.

~A=f~' ({0}) and B = f~*({1}).

We know that: Inverse image of every open set is open.

~ f71 ({0}) and £~ ({1}) are open in A.

~ Aand B are open in M.

Since fis onto, A and B are non-empty.

Clearly, ANB=@¢and AUB=M.

Thus, M = A U B, where A and B are disjoint non-empty open sets.
= M is not connected, which is a contradiction.

Hence, there does not exist a continuous function {0, 1}.

Conversely, Assume that there does not exist a continuous function f. M onto the

discrete metric space {0, 1}.

To Prove: M is connected.

Suppose M is not connected.

Then there exist disjoint non-empty open sets A and B in M such that M = A U B.

0 ifxeA

Now, define f: M — {0, 1} atf(x)z{1 if x €B

Clearly, fis onto.

Also, f71 (@) =0, f~* {0p) =A,and f7* ({1}) =B, /71 ({0,1}) =M.
Thus, the inverse image of every open set in {0, 1} is open in M.

Hence, f is continuous, which is a contradiction to our assumption.

Thus, M is connected.
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Note : The above theorem can be restated as follows:
M is connected iff every continuous function f: M — {0, 1} is not onto.
SOLVED PROBLEMS

Problem 1 : Let M be a metric space. Let A be a connected subset of M. If B is the subset of

M such that A € B € A, then B is connected. In particular, A is connected.

Solution: Let M be a metric space. Let A be a connected subset of M. If B is the subset of M
suchthat AS B C A.

To prove B is connected.
Suppose B is not connected.

Then B = B, U B,whereB; # ©,B, +# ®,B; N B, = @ and B4, B, are open in
B.

Now, since B, and B, are open sets in B, there exist open sets G1 and G, in M such
thatBl = Gl N Bande = GZ N B.

#“B=B;UB, = (G:nB)U (G, NB) = (G, UG, N B.

~ B <€ G1 VU G,
~ACS G, U G, [Since A C B].

~A=(GLUG)NA=(G,n A U (G, N A.

Now, Gy N A and G, N A are open in A.
Further, (G1 N A) N (G, N A) = (G1 N G,) N A.

= (G N Gy) N A [Since A € B]

= (Gy N B) n (G2 N B)
= B; N B,
= Q.
~ (G1n A) N (G, N A) = 0.
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Now, since A is connected, either G; N A = QorG, N A = Q.
Without loss of generality, let us assume that G, N A = @.
Since G, isopenin M, we have Gy N A = Q.

~Gi: N B = 0. [since,B < A]
~ B1 = @, which is a contradiction.
=~ B is connected.
In particular, A is also connected.

Problem 2 : If A and B are connected subsets of a metric space M and if A NB+#®, prove that

AUB is connected.

Solution: Let f: AUB—{0,1} be a continuous function.

Since, A NB#®, we can choose Xo€ A N B.

Let f(xo0)=0.

~ . AUB — {0,1} is continuous f/A: A —{0,1}is also continuous.
But A is connected.

Hence f/A is not onto.

~ f(x) =0 for all x € A or f(x) = 1 for all x € A.

But f(xo) =0 and xo € A.

~f(x) =0 for all x € A.

Similarly,

f(x) = 0 for all x €B.

~f(x) = 0 for all x € AUB.

Thus, any continuous function f: A U B — {0,1}is not onto.

~ AU B is connected.
CONNECTED SUBSETS OF R
Theorem 4.3 : A subspace of R is connected iff it is an interval.
Proof: Let A be a connected subset of R.

Suppose A is not an interval.
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Then there exists a, b,c € Rsuchthata<b<canda, c€ A buth ¢ A.
Let A; = (—o0,b) N A and A, = (b,©) N A.

Since (-0, b) and (b, ) are open in R, A; and A, are open sets in A.
Also,A; N A, = @andc € A,.

Further,a € A;and c € A,.

Hence A; # @ and A, # @.

Thus, A is the union of two disjoint non-empty open sets A; and A..
Hence A is not connected, which is a contradiction.

Hence A is an interval.

Conversely, Let A be an interval.

We claim that A is connected.

Suppose A is not connected.

Let A = A, U A,whereA, + 0,4, + 0,A;, N A, = O@and A, A, are
closed sets in A.

Choose x € A;and z € A,.

Since 4; N A, = @,we have x + z.

Either x < zor z > x.Without loss of generality, we assume that x < z.
Now, since A is an interval, we have [x, z] € A.

ie., [x,z] € A; U A,

~Every element of [x, z] is either in A; or in A,.

Now lety = Lu.b{[x,z] N A.}.

Clearlyx <y < z

Hencey € A.
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Let € > 0 be given. Then by the definition of lL.u.b, there exists t € [x,z] N
Aisuchthaty — e <t < y.
~y—gy+eon(xzlnd) =0
=y € [x,z] N A
y € [x,z] N Ay [since,[x,z] N A;is closed in A]
C Y E AT (1)
Again, by the definitionofy,y + ¢ € A, foralle > Osuchthaty + ¢ < z
Ly € A,
Ly E A verven ven e e - (2) (Since Az is closed)
y € Ajandy € A,
y € A1 N A; [by (1) & (2)]
which is a contradiction.
Since A; N A, # 0,

Hence A is connected.

Theorem 4.4 : R is connected.
Proof: By previous theorem, ac R is connected if it is an interval.

We have R = (-o0, ) is an interval.

~ R is connected.
SOLVED PROBLEMS

Problem 1: Give an example to show that a subspace of a connected metric space need not be

connected.
Solution: We know that R is connected.

Let A=[1,2] U [3,4] is a subspace of R.
But A =[1,2] U [3,4] is not connected.

~A subspace of a connected metric space need not be connected.
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Problem 2 : Prove or disprove: If A and C are connected subsets of a metric space M and if

A €S B c (C,then B is connected.

Solution:

We disprove the statement by giving a counterexample.
Let A=[1,2], B=[1,2] U [3,4],C=R.

Clearly, AcBCcC

Here A and C are connected, but B is not connected.

CONNECTEDNESS AND CONTINUNITY

Theorem 4.5 : Let M, be a connected metric space. Let M, be any metric space.
Let f: M; — M, be a continuous function. Then f(M,) is a connected subset of M.
(i.e.) Any continuous image of a connected set is connected.

Proof:

Let f: M, = M, be a continuous function and M, be a connected metric space.

Let f(M,) = A.
So that f is a function from M, onto A.
We claim that A is connected.

Suppose A is not connected.
Then there exists a proper non-empty subset B(A) which is both open and closed in A.

~ f71(B) is a proper non-empty subset of M; which is both open and closed in M.
Hence, M; is not connected, which is a contradiction. [since, M; is connected].

~ A 'is connected.

Theorem 4.6 : INTERMEDIATE VALUE THEOREM

Statement : Let f be a real-value continuous function defined on an interval I. Then f takes

every value between any two values it assumes.

Proof: Let f be a real-value continuous function defined on an interval I.
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Leta,belandlet f(a) # f(b).
Then either f(a) < f(b) or f(a) > f(b).
Without loss of generality, we assume that f(a) < f(b).
Let c be suchthat f(a) < ¢ < f(b).
The interval | is a connected subset of R.
Since f is continuous and I is a connected subset of R f (1) is a connected subset of
R. [Since, the continuous image of a connected set is connected].
We have a subspace of R is connected iff it is an interval.
~ f(I) is an interval.
Also, f(a), f(b) € f(D).
Hence, [f(a),f(B)] € f(I).
~c€ f()
~c= f(x) forsomex € I.

Thus, f takes every value between any two values.

SOLVED PROBLEMS

Problem 1 : Prove that if f is a non-constant real-valued continuous function on R, then the

range of f is uncountable.

Solution: We know that R is connected.

NOTES::

Since f is a continuous function on R, f(R) is a connected subset of R. (Since,
Continuous image of a connected set is connected.)

~ f(R) is an interval in R.

Also, since f is a non-constant function, the interval f(R) contains more than one
point.

~ f(R) is uncountable.

Thus, the range of f is uncountable.

1. Q (the set of rational numbers) is not connected.
2. If M is a metric space and x € M, then {x} is a connected subset of M.

3. A subset of a discrete metric space is connected iff it is a {}.
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Exercises :

1. Prove that [0,1] is not a connected subset of R with discrete metric.

2. Prove that any connected subset of R containing more than one point is uncountable.
[Hint : Any interval containing more than one point is uncountable]

3. Determine which of the following statements are true and which are false.
Q) R is connected
(i) Qs connected.
(iii) A subspace of a connected space is connected.
(iv)  If Aand B are connected subsets of a metric space M then AUB is connected.
(v)  Any discrete metric space having more than one point is disconnected.

CONTRACTION MAPPING THEOREM

Definition: Let (M, d) be a metric space. A mapping T: M — M is called a contraction mapping

if there exists a positive real number o < 1 such that
d(T(x), T(y)) < ad(x,y) forallx,y € M.

Note: If T is a contraction mapping, then the distance d(T(x), T(y)) is less than the distance
d(x, y).

Example 1: Let T: [0, 1/3] — [0, 1/3] defined by T(x) = x? is a contraction mapping.
Solution: Letx,y € [0,1/3].

Thenx < 1/3andy < 1/3.
d(T(x),T(y)) = [T(x) = TY)|

= |x* — y?|

= 1 + ) = )|
2
< (3) -

= 2 d
(§> (x.7)
Here,« = 2/3 < 1.

2
~ d(T(x), T(y)) < (g) d(x,y)

=~ T is a contraction mapping.
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Example 2 : T: R — R be defined by T(x) = %x IS a contraction mapping since
d(T(0),T() = ;d ).

Example 3 : The function T:l, - I, defined by T(x) = (x,/

2) is a contraction mapping, where x = (x,).
Solution: Let x,y € L.
Thenx = (xp)andy = (yp).

> @@ - TeN?

n=1

1/2

d(T(x), T()) =

1
2

- [Z((m)xn - (1/29)?

) 1/
- lz (5)7 Con =37

- (%) [Z:;l(xn — y)?]*2

=(1/2) d(x, y)

2

= d(T(X), T(y)) = (1/2) d(x, y)
~ T is a contraction mapping.

Example 4 : Let T: [0,1] — [0,1] be a differentiable function. If there is a real number awith 0
< a < 1 such that |T'(x)| < a for all x € [0,1], where T’ is the derivative of T, then T is a

contraction mapping.
Solution: Let x, y € [0,1] with x <'y.

By Mean Value Theorem,
T) —Tx) = (v —x)T'(x)
IT) — Tl = |y — x| |T'(x)]

< aly — x|
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~ d(T(), T(x)) < ad(y,x)where0 < a < 1.

THEOREM 4.7 : Let T: M — M be a contraction mapping. Then T is uniformly continuous
on M.

Proof: By the definition of a contraction mapping,

d(T(x), T(y)) < ad(x,y)wherea < 1.
~d(T(x),T(y)) < d(x,y)
Let ¢ > 0 be given.

Choose § = e.
d(x,y) <& = d(T(x),T(y)) <e.

=~ T is uniformly continuous on M.
CONTRACTION MAPPING THEOREM

Statement : Let (M, d) be a complete metric space.Let T: M — M be a contraction mapping.

Then there exists a unique point X in M such that T(x) = X.
(i.e.) T has exactly one fixed point.
Proof: Let X, be the arbitrary point in M. Let X; = T(Xo), X2 = T(X1), ..., xp= T(X5—1)-

We claim that, (x,,) is a Cauchy sequence in M.
Since, T is the contraction mapping, there exists a positive real number a, such that
0 <a<landd(T(x),T(y)) <ad(xy).

S d(xn, Xpg1) = AT (Xn-1), T (%))

< ad(Xp-1,Xn)

IA

a® d(xp_z,Xp_1)

IA

a® d(xp_3,%p_2)
< a" d(x(),xl).

S d(xp, Xpeq) < a” d(xo,x1) (D
Now,let m,n € Nand m > n.
Then,d (Xp, Xm) < d(Xp, Xn+1) + A(Xni1, Xngz) + o0+ d(Xm-1, Xim)
< ad(xe,x1) + a1 d(xo,x1) + - + a™ 1 d(xo,x1) [using (1)
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= a" d(xe,x1) [1 + a + a4+ -+ am—n-1]

< a"d(xg,x1) [ﬁ]

n

o d (o Xm) <( )d(xo,xl) e (2)

1—-a
Since0 < a < 1,the sequence (a™) — 0.

. Given ¢ > 0, there exists a positive integer n, such that |[(a«"/ (1 —
a)) d(xo,x1)| < € foralln = n,.
~(2)=>d(xp,xp) < €forallmn = n,.
Hence (x,,) is a Cauchy sequence in M.
Since M is complete, there exists x € M such that ((x,)) — x.
Also, T is continuous.
Hence, (T(x,)) — T(x).
= T(x) = &Lr?o T(x,)

= lim x4,
n—oo
= X.
Thus, T(x) = x.
Hence, x is the fixed point of T.
Now, to prove the uniqueness:

Suppose, there exists y € M such that y # x and T(y) =y.
Then, d(x,y) = d(T(x),T(»))

< ad(xy)

= d(x,y) — ad(x,y) <0
= dxy)(1 —a) <0
Clearly,d(x,y) > 0.
Also,a < 1
~0<1 — a.
i.e.(1 — a) > 0.
~ d(x,y)(1 — a) > 0, which is a contradiction.
Ly =X
Hence, x is the unique fixed point of T.
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UNIT V
COMPACTNESS

Compact Metric Spaces

Definition : Let M be a metric a metric space. A family of open sets {G.} in M is called an open cover
for M if UG, = M.

A subfamily of {G.} which itself is an open cover is called a subcover.
A metric space M is said to be compact if every open cover for M has a finite subcover.

i.e., for each family of open sets {G,} such that UG, =M, there exists a finite subfamily {Gq, Ge, ..
Gan} such that Ul Gui = M.

*

Example 1 : R with usual metric is not compact.
Proof: Consider the family of open intervals {(-n, n): n\eN}
This is a family of open sets in R.
Clearly Uy -;(-n,n) =R
~{(-n, nN)}: neN} is an open cover for R and this open cover has no finite subcover.
.. R is not compact.

Example 2 : (0,1) with usual metric is not compact.

Proof: Consider the family of open intervals {(%,n): n=2,...}
Clearly U;’f=1(%) =(0,1)
{(%,1): n=2,...} is an open cover for (0,1) and this open cover has a finite subcover.

Hence (0,1) is not compact.
Example 3 : [0,1) with usual metric is not compact.
Proof: Consider the family of open interval {[0, n): n=1,2, ...}

Clearly U;/-,[0,n) = [0,0)
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~{[0, n): n=1,2, ...} is an open cover for [0,00) and this open cover has no finite subcover.
Hence [0,0) is not compact.

Example 4 : Let M be an infinite set with discrete metric. Then M is not compact.

Proof: Let x € M. Since M is discrete metric space{x} is open in M.
AlsoUxeM {x} =M

Hence {{x}} such that x M is an open cover for M and since M is infinite, this open cover

has no finite subcover.
Hence M is not compact.

Theorem 5.1 : Let M be a metric space. Let AcM. Then A is compact iff given a family of open

sets {G.} in M such that UG,oA there exists a subfamily {Gai, G, ..., Gan} Such that UL, G.io A.
Proof: Assume that A be a compact subset of M.
Let {G,} be a family of open sets in M such that UG, DA.
To prove: there exist a subfamily {Gqi, G, ..., Gan} such that U ; G2 A.
Since UG,oA we get (UG,) N A=A
(UG.n A) =A.
Also, G, n Alis open in A.
.. The family of {G, n A} is open cover for A.

But A is compact. .. This open cover has a finite subcover (say) {Gun A, GeN A4, ..., GumN A}
such that Ui, (Gun 4) = A

(U?:l(Gai)n A = A
i U?:l Gai ) A
Conversely assume that a family of opensets {G,} in M such that UG,oA there exist a subfamily.

To Prove: A is compact.

Let {H.} be an open cover for A.
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. Each H, is openin A.
. Ho = Gyn A where G, is open in M.
We have, UH, = A
U (Gun A=A
ie, U GuNn A=A
L UGDA
Hence by hypothesis there exist a finite subfamily.
{Ga1, Gaz, .., Gan} such that Uiz, Gu A.
S(UR,Gi)NA=A
ri(Guin A=A
~UL Ha= A
.. There {Ha1, Ha, ..., Han} is a finite subcover of the open cover H,
. A'is compact.
Theorem 5.2 : Any compact subset A of a metric space M is bounded.
Proof: Given, Ac M & A is compact
To Prove: A is bounded
Let xoe A
Consider {B (xo, n): neN}
~.U%-1 B(xo, N)DA
~.{B (xo, N): neN} is an open cover for A.
But A is compact

.. This open cover has a finite subcover

{B (x0, n1), B (x0, M), ..., B (x0, N} such that U¥_; B(xo, m)2A
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Let no = max {ny, ny, ..., nk}

Ui-‘zl B (x0, Ni) = B (xo, No)

Hence B (xo, ng)2A

We know that B (xo, no) is bounded set and a subset of a bounded set is bounded.

Hence A is bounded.

Note : The converse of the above theorem is not true.
ie, A bounded set need not be a compact.
For example (0,1) is a bounded subset of R , but (0,1) is not compact.
Theorem 5.3 : Any compact subset A of a metric space (M, d) is closed.
Proof: Given that A is a compact subset of a metric space M.

To Prove: Ais closed.

ie, To prove A°is open

Lety eA°& Let xeA

Thenx # y

~d(xy)=rn>0

Also, we have B (x,%)n B (y,%) =@

Now consider the collection have {B (x,%x):x eA}

Clearly Uyes B (%, %‘);A

Tx2

Since A is compact, there exist a finite number of such open ball say B (xl,r"T1 ), B (x2, Y.

.oy B (xn, %") such that U B(x;, Txi/,)2A
Now let Vy = NiLy By, 7xi/,)
Now let V, = i=1nB(xi, rx[1/2)

Clearly, Vy is an open set containing y.
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Since B (x,—)N B (y,--)= @ we have V;, N B(X, 1yy/,) for eachi= 1,2, ....,n

Vyn [U?:l B(X'Txi/z)] =0

oo VycA®
L. UyeAC I/y = AC

Since each Vy is open we have arbitrary union of open set is open
“UyeacVy is open.
. A’is open
Hence A is closed.
Note 1 : The converse of the above theorem is not true.

For example [0,) is a closed subset of R but it is not compact.From theorem (5.2) & (5.3) we

have any compact subset of a metric space is closed and bounded.
Theorem 5. 4 : A closed subspace of a compact metric space is compact.
Proof:Let M be a compact metric space.

Let A be a non-empty closed subset of M.

We claim that A is compact.

Let {G,: a€ I} be a family of open sets in M such that U, ; G.oA

AN [Uger G =M

Since A is closed A° is open

~.{Gq: a€ I} U A®is an open cover for M

Since M is compact, this open cover has a finite subcover Gui, G, ..., Gan , A° Such that
Uit; GiUA =M

S UL GuiDA

.. Ais compact.
Compact Subsets of R
Theorem 5.5 (Heine Borel Theorem): Any closed interval [a, b] is a compact subset of R.

Proof: Let {G,: a€ I} be a family of open sets in M such that U, .; G.2 [a, b]
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We claim that [a, b] is a compact subset of R.

Let S = {x:x € [a, b]} and [a, x] can be covered by finite number of G.
Clearly aeS and hence S+ 0.

Also, S is bounded above by b.

Let ‘¢’ denote the least upper bound of S.

Clearly, ce[a, b]

..€ceGy for some o

Since G is open, there exist € > 0 such that (c-¢, cte)cGai

Choose x1<[a, b] such that x:1< ¢ and [x1, ¢] =G

Now, since xi< ¢, [a,x1] can be covered by finite number of Gs.
These finite number of G, s together with G, covers [a, €]

.. By definition of S, ceS.

Now we claim that c=b

Suppose ¢ # b. Then choose x2<[a, b] such that x> >c and [¢,x2]=Gu
As before [a, x2] can be covered by finite number of G.

Hence x2S

But x2> ¢ which is a contradiction since c is the lub of S.

-.c=b

.. [a, b] can be covered by finite number of Ggs.

..[a, b] is a compact subset of R.
Theorem 5.6 : A subset A of R is a compact iff A is closed and bounded.
Proof: Assume that A is compact.

To prove: A is closed and bounded.

By theorem 5.2, We have A is bounded

By theorem 5.3, We have A is closed

Conversely, assume that a subset of R which is closed and bounded.

To prove: A is compact

Let A be a subset of R.

Since A is bounded we can find a closed interval [a, b] such that Ac[a, b]
Since Ais closed in R, Ais closed in [a, b] also.

Thus, A is closed subset of a compact metric space [a, b].

Hence by theorem 5.4, A is compact.
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EQUIVALENT CHARACTERISATION FOR COMPACTNESS

Definition : A family t of subset of a set M is said to have the finite intersection property if any finite

subfamily of t has non-empty intersection.
Example : In R the family of closed intervals 1= {[-n, n]:neN} has finite intersection property.

Theorem 5.7 : A metric space M is compact iff any family of closed sets with finite intersection

property has non-empty intersection.
Proof: Assume that M is compact.
Let {A,} be a family of closed subsets of M with finite intersection property.
We claim that N A,# @
Suppose N A= 0
Then (N Aa)¢ = @°
UA,S =M
Also, since each A, is closed A,° is open
~.{A.} is an open cover for M.
Since M is compact this open cover has a finite subcover say A:%, A, ..., Ax°
UL A =M
(N 4)°=M
[(Niz1 4)° 1= M°
Niz 4 =0
which is the contradiction to the finite intersection property
SNAFE D

Conversely assume that each family of closed sets in M with finite intersection

property has non-empty intersection.
To prove M is compact

Let G, such that G,<1 be an open cover for M
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“User G =M

5 (Ueer Go) = M°

Neer G =0

Since G, is open G,° is closed for each a.

.1 ={G.% ael} is a family of closed sets whose intersection is empty.
Hence by hypothesis, this family of closed sets does not have the finite intersection property.
Hence there exist a finite subcollection of t say {G:°G-, ..., G»°} such that
Ni:G; =0

ie., (UL, G)°'=0

ie., UL,G; =M

-Gy, Gy, ..., Gn} is a finite subcover of the given open cover.

Hence M is compact.

Definition : A metric space M is said to be totally bounded if for every £>0 there exist a finite number

of elements x; , x5, ..., x, € M such that B (x1, &) U B (x2, &) U, ..., U B(xn, €) = M.

A non- empty subset A of a metric space M is said to be totally bounded if the

subspace A is a totally bounded metric space.
Theorem 5.8 : Any compact metric space is totally bounded.
Proof: Let M be a compact metric space.
Then {B (x,&):xeM} is an open cover for M.
Since M is compact this open cover has a finite subcover say B (x1, €), B (x2, €), ...,
B (xn, €) such that Ui~ B(x;, &) = M
ie, B (x1, &) UB (x2,€) U...... UB (xp, &) = M.

Hence M is totally bounded.
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Theorem 5.9 : Let A be a subset of a metric space M. If A is totally bounded, then A is bounded.
Proof: Let A be a totally bounded subset of M.

Let £>0 be given, then there exist a finite number of points x;, x5, ...., X, € A such that B

(x1, &) UB (x2, &) U........... U B (xn, €) = A where B (xi,¢) is an open ball in A.

Further we know that an open ball is a bounded set.

Thus, A is the union of a finite number of bounded sets and hence A is bounded.
Note : The converse of the above theorem is not true. ie., a bounded set need not be totally bounded.
Example : Let M be an infinite set with discrete metric.

Clearly M is bounded
Now B( x 5) = {x}
Since M is infinite M cannot be written as the union of a finite number of open balls B( x ,%).

Then M is not totally bounded.

Definition : Let x, be a sequence in a metric space M. Let ni< ny<...<nk<... be an increasing sequence

of positive integers. Then (xn) is called the subsequence of ( xn)

Theorem 5.10 : A metric space (M, d) is totally bounded iff every sequence in M has the Cauchy’s

subsequence.
Proof: Suppose every sequence in M has a Cauchy subsequence.
We claim that M is totally bounded
Let &> 0 be given
Choose x1eM
If B (x1, €)# M, choose x2eM-B (x1, €) so that D (x1,x2)=> €
Now B (x1, €)U B (x2, €) = M then the proof is complete.
If not choose x3eM- [B (x1, €)U B (x2, €)] and so on.
Suppose this process does not stop at a finite stage.

Then we obtain a sequencex; , X, ..., X, , ... suchthatd (x,, xm)= eifn=m
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Clearly this sequence (xn) cannot have a Cauchy subsequence which is a contradiction.

Hence the above process stops at a finite stage, and we get a finite set of points
X1,X2, w0, Xg,SUCh that M =B (x1, €) U B (x2,€) U, ..., U B (xn, €)

.. M is totally bounded.

Conversely suppose M is totally bounded.

We claim that every sequence in M has a Cauchy subsequence.
Let S1= {x11, x12, X13, ... X1n} be a sequence in M.

If one term of the sequence is infinitely repeated, then S; contains a constant subsequence

which is obviously a Cauchy subsequence.

Hence, we assume that no term of S; is infinitely repeated so that the range S is infinite.
Now, Since M is totally bounded M can be covered by a finite number of open balls of radius
1

2

Hence at least one of these balls must contain an infinite number of terms of the sequence S;.

.. Sy contains a subsequence Sy = (x21, x22, X23, ... X2n, ...) all terms of which lie within an

open ball of radius%

Similarly, Sz contains a subsequence Sz = {xa1, X3z, X33, ... X3n, ...) all terms of which lie

within an open ball of radius é

We repeat this process of forming successive subsequence and finally we take the diagonal

sequence.
S = (x11, x22, X33, ... Xmn, ...)

We claim that S is a Cauchy subsequence of S;

If m>n both xmm and xn, lies with an open ball of radius %
. d <2

A (xmm, xnn) a

: 2
Hence d (xXmm, xm) <e if n, m>-

This shows that S is a Cauchy subsequence of S;
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Thus, every subsequence in M contains a Cauchy subsequence.
Corollary : A non-empty subset of totally bounded set is totally bounded.
Proof: Let A be totally bounded subset of a metric space M.

Let B be a non-empty subset of A.

To prove: B is totally bounded.

It is enough to prove that every sequence has a Cauchy subsequence

Let (xn) be a sequence in B.

.~ (xn) is a sequence in A.

Since A is totally bounded (xn) has a Cauchy subsequence.

Thus, every sequence in B has a Cauchy subsequence.

.. Bis totally bounded.

Definition : A metric space M is said to be sequentially compact if every sequence in M has a

convergent su b-sequ ence.

Theorem 5.11 : Let be a Cauchy sequence in a metric space. If (x,) has a subsequence (xn) converging

tox , then converges to x.

Proof: Let >0 be given

Since (xn) is a Cauchy sequence, there exists a positive integer ms such that d (xn, xm) <%s for

alln, m=m;y ...... €))

Also, since (xnk)— x, there exists a positive integer m; such that
d (xnk, X)<e for all > m Q)

Let mo = max {m1, m;} and fix nx=mg
Then d (xn,x) < d (xn,xnk) + d (Xnk, xn)

& &
<E +E for all nk=mq

= ¢ for all {k=mo .". (xn)—= x
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Theorem 5. 12 : In a metric space M, the following are equivalent.

(i)  Mis compact.

(i) Any infinite subset of M has a limit point.
(i) M is sequentially compact.
(iv)  Mis totally bounded and complete.

Proof: (i)= (ii).
Assume that M is compact
To prove: Any finite subset of M has a limit point.
Let A be an infinite subset of M
Suppose A has no limit point in M
Let, xeM
Since x is not a limit point of A there exists an open ball B (x,rx) such that
Bx,r)n (A-{x})=0

{x},ifxeA
@, if xgA

B (x,)N A = {
Now {B (x,r):x M} is an open cover for M
Also, each B (x,rx) cover atmost one point of the finite set A.
Hence this open cover cannot have a finite subcover which is a contradiction to (i)
Hence A has atleast one limit point.
(ii)=(iii)
Assume that: Any finite subset of M has a limit point.
To prove: M is sequentially compact.

Let (xn) be a sequence in M.

If one term of the sequence is infinitely repeated, then (x,) contains a constant subsequence

which is convergent.

Otherwise (xn) has an infinite number of terms.
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By hypothesis, this infinite set has a limit point, say x.

We know that “for any r>0, the open ball B (x,r) contains infinite number of terms of the

sequence (xn).”
Now we choose a positive integer ny, such that xneB (x, 1)

Then choose n> ny such that x,eB (x,%)

In general, for each positive integer k choose ni such that ni>nk; and xneB (x,%)
Clearly, (xnk) is a subsequence of (xn).
Also, d (xnk, x) <i

So(xnk) = x
Thus (xnk) is a convergent subsequence of (xn).
Hence M is sequentially compact.
(iii)=(iv)
Assume that M is sequentially compact.
To prove: M is totally bounded and complete.
By hypothesis, every sequence in M has a convergent subsequence.
But every convergent sequence is a Cauchy sequence.
Thus, every sequence in M has a Cauchy sequence.
By theorem, M is totally bounded.
Now, we prove that M is complete.
Let (xn) be a Cauchy sequence in M.
By hypothesis, (xn) contains a convergent subsequence in (xnk)
Let (xnk) — x (say)
Now by theorem (xn)— x

. M is complete.
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(iv) =(@)
Assume that M is totally bounded and complete.
To prove: M is compact.
Suppose M is not compact.
Then there exists an open cover {G.} for M which has no finite subcover.
1

Since, M is totally bounded, M can be covered by a finite number of open balls of radius ri.
Since M cannot be covered by a finite number of G atleast one of these open balls, say

B (x1, r1) cannot be covered by a finite number ofGs.

Now B (x1, r1) is totally bounded.

Hence as before we can find x2€ B (x1, r1) such that B (x2, r2) cannot be covered by a finite

number of Ggs.

Proceeding like this we obtain a sequence (xy) in M such that B (x,, rn) cannot be covered by

a finite number of G5 and x,,,1 €B (xn, n) for all n.
NOW, d (Xn, Xn+p) < d (.Xnl Xn+1) + d (Xn+1, Xn+2) +....+d (Xn+p-1,Xn+p)

<Ih+rlpert ... +I'n+p+1

1 1 1

- Z_n on+1 on+p-1
1 1 1 1

T -t (E 2z 210)

1
2n-1

.. (xn) is a Cauchy sequence in M.
Since M is complete, there exists xeM such that B (x,£)cG. ...... (1)

We have (x)— xand (r,) = (Zin)—> 0

Hence, we find a positive integer n: such that d (xn, x)<%8 and 1y %e for all n=ny
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We claim that B (xn, ra) B (x.€)
Let yeB (xn, ')

s d(y,xn) <rn<%s

Now, d (y,x) < d (y,xn) +d (xnx)

<

N | =

1
et+—¢
2

I
™

~ye B (x,e)
- B (xn, m)eB (x,6)=G. [ by (1)]
Thus B (xn, rn) is covered by the single set G, which is a contradiction.
Since B (x, r,) cannot be covered by a finite number of Gys.
Hence M is compact.
Theorem 5.13 : R with usual metric is complete.
Proof: Let (xn) be a Cauchy sequence in R.
Then (xn) is a bounded sequence and hence is contained in a closed interval [a, b].
Now [a, b] is compact and hence is complete.
Hence (xn) converges to some point x €[a, b]

Thus, every Cauchy sequence (x,) in R converges to some point x in R and hence R is

complete.
Solved Problems
Problem 1: Given an example of a closed and bounded subset of I, which is not compact.
Solution:

Consider 0 = (0,0,0, ...)el;

Consider the closed ball B [0,1]

Clearly, B [0,1] is bounded.
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Also, B [ 0,1] is closed set.

We claim that B [0,1] is not compact.

Consider e; = (1,0,0, ...).

e2=(0,1,0...);¢,=(0,0,0...1,0 ...)

Now, d (0, e)) = 1 and hence e,eB [0,1] for all n

Thus (en) is a sequence in B [0,1]

Also, d (en, em) = V2 if n = m.

Hence the sequence (en) does not contain a Cauchy subsequence.

. B[0,1] is not totally bounded.

.. B [0,1] is not compact.

Problem 2 : Prove that any totally bounded metric space is separable.
Solution: Let M be a totally bounded metric space.

For each natural number n.

Let An = { xn1, Xn2, ...Xnn} be a subset of M such that U¥_; B (x,,;, %) =M ....(1)

Let A=Up-1 4,

Since each A, is finite, A is countable subset of M.

We claim that A is dense in M.

Let B (x,€) be any open ball.

Choose a natural number n such that %<s
Now, xeB (xni, %) for some i [by (1)]
oo d (i, X) <%<8

2 (i) € B (x,8)

LB nNA+0
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Thus, every open ball in M has non-empty intersection with A.

Hence by theorem, A is dense in M.

Thus, A is a countable dense subset of M.

Hence M is separable.
Problem 3 : Prove that any bounded sequence in R has a convergent subsequence.
Solution: Let (xn) be a bounded sequence in R.

Then there exists a closed interval [a, b] such that x,<[a, b] for all n.

Thus (xn) is sequence in the compact metric space [a, b]

Hence by theorem, (x,) has a convergent subsequence.

Problem 4 : Prove that the closure of a totally bounded set is totally bounded.
Solution: Let. A be a totally bounded Subset of a metric space M.
We claim that A is totally bounded.
We shall show that every sequence in A contains a Cauchy subsequence.
Let (xn) be a sequence in A4 .

Let £>0 be given

Then since the x,eA B(xnés)n A+0Q
Choose yne B(xn%s)n A

w.d (3, 20) < .. (1)

Now, (yn) is totally bounded (y») contains a Cauchy subsequence say (yn).

Hence there exists a natural number m such that

d (v, xny) <3e for all ng, N> m ... (2)
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. (eniy yog) < d (eniy yn) +d (Vni, Yoj) +d (Yo, Xnj)
<&+ e +-e=¢ forallm, 0y [by (1) and (2)]
Hence (xnk) is a Cauchy subsequence of x.
.. A'is totally bounded.
Problem 5 : Lot A be a totally bounded subset of R. Prove thatA is compact.
Solution: Since A is totally bounded A is also totally bounded.
Also, sinceA is a closed subset of Rand R is complete 4 .is complete.
Hence A is to totally bounded and complete.
.. A'is compact.
COMPACTNESS AND CONTINUITY

Theorem 5.14 : Let f be a continuous mapping from a compact metric space Mito any metric spaceM..

Then f (M4) is compact.
ie, continuous image of a compact metric space is compact.

Proof: Without loss of generality, we assume that f (Mi) = M»

Let {G,} be a family open set in M, such that UG, = M-

UG =1 (My)

UG, =My

S U1 (Gy) =My

Also, since f is continuous f-1 (G,) is open in M for each a

~.{f1(Go)} is an open cover for M.

Since M1 is compact this open cover has a finite subcover say f1 (Ga1), ... f1 (Gan)

5of1 (Gar) UFL (Go2) U ... UF1 (Gan) = My

UL, Go)= My

SUL Ge =F (M) =M,
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Gai, Gaz, .... Gan IS @an open cover for M,
Thus, the given open cover {G,} for M has a finite subcover.
.. M2 is compact.

Corollary 1 : Let f be a continuous map from a compact metric space M into any metric M2 Then f
(Myy is closed and bounded.

Proof: f (My) is compact and hence is closed and bounded.

Corollary 2 : Any continuous real valued function f defined on a compact metric space is bounded
and attains its bounds.

Proof: Let M be a compact metric space.
Let f: M =R be a continuous real valued function.
Then f (M) be a compact subset of R.
. £ (M) is closed and bounded subset of R
Since f (M) is bounded f is a bounded function.
Now, let a = lub of f(M) &
b = glb of f (M)
By definition of lub & glb a, b ef (M) but f (M) is closed.
Hence f (M) = f (M)
s.a,bef(M)
.. There exists x,yeM such that f (x) =a & f(y) =b
Hence f attains its bounds.

Note : Corollary 2 is not true if M is not compact.
The function f: (0, 1)-R defined by f (x) = % is continuous but not bounded.

Theorem 5.15 : Any continuous mapping f defined on a compact metric space (M, d.) into any other
metric space (M, dy) is uniformly continuous on M.

Proof: Let >0 be given
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Let xeM;

Since f is continuous at x,there exist §,,>0 such that d; (y, x) <&,
= ((F @), f (0)) <5 .. (1)

{B (x, 5x): xeM1} is an open cover for M.
2

Since My is compact this open cover has a finite subcover say B (x, 6x1), ..., B (x, 6xn)
2

2

Let § =min {6x1 , xz, ..., Sxn}
2 2 2

We claim that d1 (p, q) <6=d: ((f(p), f(q))<e

Let peB (xi, 6xi) forsome1<i <n

2

~.di(p,xi) <Oxi

s (F(p), T (xi) <§ wer. (2) [from (1)]

Now, di (g, xi)< d: (p, @) + d1 (p, xi)

<5+5x_i

2

<5x_i+ 5ﬂ
2 2

= 6xi
Thus di (g, xi) <6y

-2 (F (), f (x1) <§ ooe. (3) [from (1)]

Now, d2 ((f(p), f(q)) < d2 (f (p), f (xi) + da (f (xi), T (a))

Thus, di (p, ) <6= d2 (f (p), f(q)) <e

.. fis uniformly continuous on M.
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Theorem 5.16 : Let f be a 1-1 continuous function from a compact metric space M: onto any metric
space M.. Thenf ™is continuous on M.. Hence f is a homeomorphism from M; onto M..

Proof: We shall show that fis continuous.
By proving that F is closed set in Mi=(fY (F) = f(F) is a closed set in My,
Let F be a closed set in My
SinceMis compact
..F is compact
Since f is continuous, f (F) is a compact subset of M.
.. T (F) is closed subset of M.
-.FLis continuous on M.
Solved Problems

Problem 1: Prove that the range of a continuous real valued function f on a compact connected metric

space M must be either a single point or a closed and bounded interval.
Solution: Let f:M—R be a continuous function.
If f is a constant function, then the range of f is a single point.
Suppose f is not a constant function, then the range of f contains more than one point.
Since M is connected
f (M) is connected subset of R
~.f(M) is an interval in R.
Also, since Mis compact and fis continuous.
~. (M) is a compact subset of R.
.. f (M) is a closed and bounded subset of R.
Thus f (M) is a closed and bounded interval of R.
Problem 2 : Prove that any continuous function f: [a,b] R is not onto.

Solution: Suppose f is onto
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Then f [a, b] =R
Now, since [a, b] is compact and fis continuous.
.. f[a,b] = R is compact, whichis a contradiction.
.~.Tis not onto.

EXERCISES

1. Give an example of an open cover which has no finite subcover for the following
subsets of R.
() (56) (i) (5,00) (i) [5,00)  (iv) [7,9].

2. Show that every finite metric space is compact.

3. Give an example of a connected subset of R which is not compact.

4. If A and B are two compact subsets of a metric space M, prove that AUB is also
compact.

5. Determine which of the following subsets of R are compact.

(1) z (i) Q (iii) [1,2] (iv) (3.4)
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